

Sustainability in Polytechnic Institutions: A Roadmap to A Greener Future

Suziee Sukarti¹, Liyana Norizan^{2*}

¹Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100
Durian Tunggal, Melaka, Malaysia
²Department of Mechanical Engineering, Politeknik Kuching, KM 22 Jalan Matang, 93050, Kuching, Sarawak, Malaysia

*Corresponding author: liyana_nirizan@poliku.edu.my Please provide an official organisation email of the corresponding author

Abstract

Sustainability is an essential concept that has gained momentum in recent years as a response to the growing concern about global environmental issues. A sustainable approach seeks to meet the needs of the present without compromising the ability of future generations to meet their own needs. Polytechnic institutions, as centers of education and innovation, have a crucial role to play in fostering sustainability by integrating its principles into academic curricula, research, campus management, and community outreach. This paper will discuss the significance of sustainability in polytechnic institutions and provide recommendations on how to achieve it effectively. This research paper uses quantitative methods on previous studies related to sustainability and was published on Scopus from 2000 to 2023. The results of the study found that sustainability in polytechnic institutions can be improved in terms of collaborative relationships between institutions, and encourage all students, not just freshmen, to think sustainably. The results of this study are expected to help TVET institutions, stakeholders, and the government to develop a green curriculum especially in the implementation of green elements as well as increase the marketability and competitiveness of TVET graduates.

Keywords: - Sustainability, polytechnic, TVET

1. Introduction

Polytechnic institutions are specialized, career-focused educational establishments that provide students with technical and vocational training in various fields such as engineering, technology, applied sciences, and business management according to Technical and Vocational Education and Training – Education for sustainable Development (TVET-ESD) (UNESCO, 2014). These institutions emphasize hands-on, practical learning experiences and often collaborate with industry partners to align their curricula with the needs of the job market. Polytechnic institutions serve as vital contributors to the development of skilled professionals, who play a significant role in driving economic growth, innovation, and social progress (Giesecke, 2013). As centers of

© 2023 Politeknik Mukah. All rights reserved

education and innovation, polytechnic institutions bear the responsibility of promoting sustainability in their academic and operational practices to ensure a better future for the planet and its inhabitants.

Polytechnic institutions, with their focus on applied learning and industry-driven curricula, have a unique opportunity to contribute to sustainability by preparing students for careers that address environmental, social, and economic challenges (Sterling, 2004). The relationship between polytechnics and sustainability lies in their ability to influence future professionals who will implement sustainable practices in various sectors, such as engineering, technology, and business management.

The issue at hand is the urgent need for integrating sustainability into polytechnic institutions. As centers of education and innovation, these institutions have a crucial

Full Paper

Article history Received 26 July 2023 Received in revised form 26 July 2023 Accepted 11 August 2023

Published online 30 September 2023

role to play in fostering a sustainable future by addressing environmental, social, and economic challenges. The issue concerns the development and implementation of sustainable practices across various aspects of polytechnic institutions, including academic curricula, research initiatives, campus management, and community outreach. By failing to prioritize and incorporate sustainability, polytechnic institutions may inadvertently contribute to environmental degradation, resource depletion, and social inequalities, which can have longlasting negative consequences for future generations.

Alshuwaikhat & Abubakar (2008) and Fadeeva & Mochizuki (2010) state that there is an immediate need to integrate sustainability into polytechnic institutions. As educational and innovative hubs, these institutions play an essential role in fostering a sustainable future by addressing environmental, social, and economic challenges (Lozano et al., 2013; Tilbury, 2011). By incorporating sustainability principles and practises into their curricula, research, and campus operations, polytechnic institutions can assist in equipping the next generation of leaders with the skills and knowledge necessary to create a more sustainable world (UNESCO, 2017; Wiek, Withycombe, & Redman, 2011).

Integrating sustainability into polytechnic education involves incorporating sustainable principles and practices across all aspects of the institution, including academic curricula, research initiatives, campus operations, and community engagement (Mochizuki & Fadeeva, 2008). By doing so, polytechnic institutions can produce graduates with the knowledge, skills, and values necessary to develop innovative solutions to complex sustainability challenges, thus fostering a greener and more equitable future.

1.1 Objective

This research will discuss the significance of sustainability in polytechnic institutions and provide recommendations on how to achieve it effectively. This study will make it easier for other educational institutions to use the same strategy or improve it in the future. To achieve this goal, the objectives are developed based on the following points:

- 1. To survey the intellectual core and landscape of the general body of knowledge in sustainability in polytechnic.
- 2. To access the quality of the current body of knowledge sustainability in polytechnic.

1.2 Scope

The scope of this study is focused on the 23 years of publication and research in Scopus from 2000 to 2023.

2. Literature Review

Sustainability has become a critical issue in higher education institutions, including polytechnics. Polytechnic institutions are expected to play a significant role in promoting sustainability and creating a greener future. However, studies have shown that sustainability is not adequately integrated into the curriculum of polytechnic institutions (Nazif, Mustapha, & Ocheme, 2020).

The implementation of sustainability practices in higher education institutions has been analyzed in several studies which analyzed the current state of implementation of sustainability development in Portuguese higher education institutions (Aleixo, Azeiteiro, & Leal, 2018). The study found that there is a need for a more comprehensive approach to sustainability in higher education institutions. Storey, Killian & O'Regan (2017) mapped the field of responsible management education in the context of the Sustainable Development Goals (SDGs). The study highlighted the importance of integrating sustainability into the curriculum of higher education institutions.

Several studies have focused on the role of polytechnic institutions in promoting sustainability. Lee-Yaw et al. (2016) analyzed the possible ways that educational institutions can implement green ICT to ensure that their environment is economically sustainable. The study used Accra Polytechnic in Ghana as a case study (Pardal, Romeira, & Durão, 2020) that studied the challenges and opportunities of creating an eco-green campus at the Polytechnic Institute of Beja. The study highlighted the important role of higher education institutions in promoting sustainability.

Polytechnic institutions have also been studied in terms of their economic impact. Alves et al. (2015) estimated the economic impact of a group of polytechnic institutes located in regions with diverse socioeconomic realities. The study found that polytechnic institutions have a significant impact on the local economy.

In conclusion, sustainability is a critical issue in polytechnic institutions. Studies have shown that sustainability is not adequately integrated into the curriculum of polytechnic institutions. However, there is a growing awareness of the importance of sustainability in higher education institutions, and several studies have focused on the role of polytechnic institutions in promoting sustainability. Polytechnic institutions have also been studied in terms of their economic impact.

3. Methodology

In this study, qualitative methods were used in this research. Using the keywords "sustainability" and "polytechnic", 168 papers have been identified for the analysis using a science mapping tool. Science mapping was conducted in two stages. The first stage involved constructing networks through keywords and institutions co-occurrence analysis as explained in the next section and the second stage involved generating maps for mining useful information from network measures, and to display conceptual, intellectual, or social evolution of the research field, discovering patterns, trends, seasonality, and outliers (Chen, 2017).

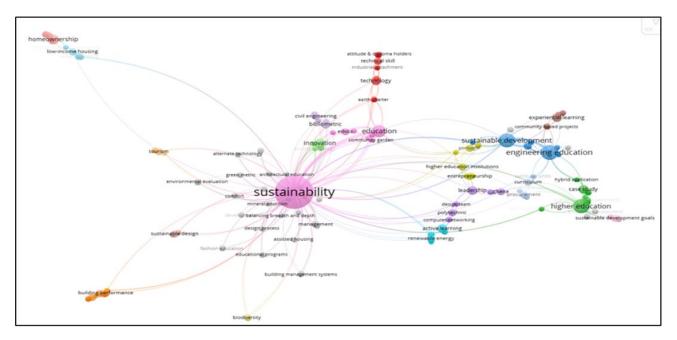


Fig. 1. Main research interests on sustainability in polytechnics (co-occurrence network keywords)

4. Result and Discussion

The study of sustainability in polytechnics were discussed in terms of: (a) keyword of occurrence and (b) country collaboration.

4.1 Objective

VOS viewer is used to establish a system of collaborative writing between numerous institutions. In a typical keyword co-occurrence network, the nodes represent the keywords themselves, and the edges represent the relationships between them (representing relations among sets of keywords). Connections between organizations are shown as lines between circles. The greater the concentration of institutions, the more often they occur simultaneously. Each cluster of keywords is represented by a different colour, and these colours correspond to research hubs. The closeness or cooperation between two nodes is represented by the thickness of the link's silhouette. These descriptions can later be applied to other networks by substituting keywords with countries and institutions. Table 1 and Fig. 2 shows the result of cooccurrence keywords.

Table 1.	Top 50	keywords	3
----------	--------	----------	---

Degre e	Centralit y	Label	Relative Influence
117	520	sustainable development	1
85	310	sustainability	2
73	280	engineering education	3
57	110	students	4
46	100	architectural design	5
45	60	education	6
40	90	Higher education	7
38	90	leadership	8
35	40	design	9
32	40	curricula	10

28 80 budget control 11 28 70 energy utilization 12 25 20 Beijing 13 25 20 investment 14 24 80 climate change 15 23 40 China 16 22 10 construction 17 22 60 building technology 19 21 20 energy conservation 20 21 20 building systems 21 20 10 construction industry 22 20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 te				
25 20 Beijing 13 25 20 investment 14 24 80 climate change 15 23 40 China 16 22 10 construction 17 22 60 buildings 18 22 10 construction 20 21 20 energy conservation 20 21 20 building systems 21 20 10 construction industry 22 20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving	28	80	budget control	11
2520investment142480climate change152340China162210construction172260buildings182210building technology192120energy conservation202120building systems212010construction industry222020decision making231960international cooperation241920ecology251820environmental engineering261810architecture271720education computing351610curriculum371510teaching381510energy saving391410automation421420civil engineering441460building performance4514104d model461420urban planning471310environmental management48	28	70	energy utilization	12
24 80 climate change 15 23 40 China 16 22 10 construction 17 22 60 buildings 18 22 10 building technology 19 21 20 energy conservation 20 21 20 building systems 21 20 10 construction industry 22 20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 automation 42 14	25	20	Beijing	13
23 40 China 16 22 10 construction 17 22 60 buildings 18 22 10 building technology 19 21 20 energy conservation 20 21 20 building systems 21 20 10 construction industry 22 20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 automation 42 14 10 automation 42 14 10 ad model	25	20	investment	14
2210construction17 22 60buildings18 22 10building technology19 21 20energy conservation20 21 20building systems21 20 10construction industry22 20 20decision making23 19 60international cooperation24 19 20ecology25 18 20environmental engineering26 18 10architecture27 17 20energy efficiency33 17 10education computing35 16 10curriculum37 15 10teaching38 15 10energy saving39 14 10automation42 14 00dd model43 14 20civil engineering44 14 60building performance45 14 104d model46 14 20urban planning47 13 10emission control49	24	80	climate change	15
22 60 buildings 18 22 10 building technology 19 21 20 energy conservation 20 21 20 building systems 21 20 10 construction industry 22 20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 20 civil engineering 44 14 10	23	40	China	16
2210building technology19 21 20energy conservation20 21 20building systems21 20 10construction industry22 20 20decision making23 19 60international cooperation24 19 20ecology25 18 20environmental engineering26 18 10architecture27 17 20energy efficiency33 17 10education computing35 16 10curriculum37 15 10teaching38 15 10energy saving39 14 10automation42 14 103d model43 14 20civil engineering44 14 60building performance45 14 104d model46 14 20urban planning47 13 10emission control49	22	10	construction	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	60		18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	10	building technology	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	20		20
20 20 decision making 23 19 60 international cooperation 24 19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48	21	20	building systems	21
1960international cooperation241920ecology251820environmental engineering261810architecture271720energy efficiency331710education computing351610curriculum371510teaching381510energy saving391410management401410automation4214103d model431420civil engineering441460building performance4514104d model461420urban planning471310environmental management481310emission control49	20	10	construction industry	22
19 20 ecology 25 18 20 environmental engineering 26 18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48	20	20	decision making	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	60		24
18 10 architecture 27 17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48	19	20	ecology	25
17 20 energy efficiency 33 17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48	18	20		26
17 10 education computing 35 16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48	18	10		27
16 10 curriculum 37 15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	17	20	energy efficiency	33
15 10 teaching 38 15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	17	10	education computing	35
15 10 energy saving 39 14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	16	10	curriculum	37
14 10 management 40 14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	15	10	teaching	38
14 10 automation 42 14 10 3d model 43 14 20 civil engineering 44 14 60 building performance 45 14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	15	10	energy saving	
14103d model431420civil engineering441460building performance4514104d model461420urban planning471310environmental management481310emission control49	14	10	management	40
1420civil engineering441460building performance4514104d model461420urban planning471310environmental management481310emission control49	14	10	automation	
1460building performance4514104d model461420urban planning471310environmental management481310emission control49	14	10	3d model	43
14 10 4d model 46 14 20 urban planning 47 13 10 environmental management 48 13 10 emission control 49	14	20	civil engineering	44
1420urban planning471310environmental management481310emission control49	14	60	building performance	45
1310environmental management481310emission control49	14	10	4d model	46
1310emission control49	14	20	urban planning	47
			environmental management	
1310carbon footprint50	13	10	emission control	49
	13	10	carbon footprint	50

Using weighted degree values, the most influential keywords in the network were identified. Nodes were recoloured and resized according to their weighted degree values, with larger nodes and thicker linkages denoting greater weighted degree values (Van Eck & Waltman, 2011). Several key findings have been found from the analysis:

i. Some research interests have received special attention, while others have remained under research. Given that this review paper initially focused on

these terms, sustainability development and sustainability are the most frequently occurring keywords. Engineering education, students, architectural design, education, higher education, and leadership have received considerable attention in sustainability in polytechnic research (Table 1). They are all interconnected terms related to the larger theme of sustainable energy and climate change mitigation. The results indicate that these have been the top themes in literature.

- ii. Sustainable development and sustainability mostly focus on engineering education and students. For instance, in Malaysia, green curriculum has been embedded in the engineering department of polytechnics Malaysia (Jabatan Pendidikan Politeknik, 2018) whereas for the non-engineering course, green elements are difficult to integrate into the existing program/syllabus structure. They must create syllabus based on the green compliance that suitable with Malaysian environment. Lozano et al. (2015) emphasize the importance of integrating sustainability into the academic curriculum of higher education institutions, including polytechnics. The authors highlight the need for interdisciplinary courses that cover sustainability principles and focus on practical applications across various fields. They also stress the importance of fostering problemsolving, critical thinking, and collaboration skills among students to enable them to develop innovative solutions to real-world challenges related to sustainability.
- The result further suggests that limited attention has iii. been directed toward knowledge in carbon footprint, emission control, management, environmental, urban planning and 4d model. This must draw the higher education administrator's attention, given that knowledge in carbon footprint, how to control emission, good management and applying new technology such 4D model can assist sustainability issue especially in knowing the impact of the programme. Briens et al. (2023) reported that as the importance of sustainability teaching and learning increases, a growing number of higher education institutions (HEIs) are evaluating the efficacy of their approach to sustainability education. However, most assessments fall short of determining how curriculum plans influence learning outcomes.

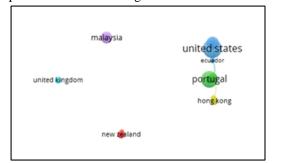


Fig. 2. Collaboration network of countries in the literature on sustainability in polytechnics

4.2 Collaboration Between Countries

It is helpful for research partnership and policymaking to learn about the network of institutions with a high investment and interest in research on retrofitting. Fig. 2 shows that out of the 50 countries studied, only 18 of them publish three or more documents. Concerning the strength of relations, the strongest relations were among these countries the United States, Equatorial Guinea, and Hong Kong have intergovernmental cooperation among these 18 nations. However, the link silhouette suggests that the networking is weak. Even though Malaysia, the United Kingdom, and New Zealand have produced more than three documents on the subject, there has been no international cooperation on sustainability in polytechnics for these nations.

5. Limitation and Suggestion

There is a lack of expertise in sustainability, particularly in third-world countries, is to highlight the disparities in resources, education, and infrastructure that contribute to this knowledge gap. These countries often face numerous social, economic, and political challenges that hinder the development of expertise in sustainability.

Moreover, the prioritization of immediate needs, such as addressing poverty, hunger, and basic infrastructure, may lead governments and institutions in third-world countries to allocate fewer resources to the development of sustainable expertise. Furthermore, the lack of collaboration and knowledge-sharing between developed and developing nations may also contribute to the gap in sustainability expertise.

To address this issue, it is essential to foster international partnerships and knowledge-sharing initiatives, as well as invest in capacity-building programs that can help develop local expertise in sustainability. By providing resources, training, and support to third-world countries, the global community can work together to close the sustainability expertise gap and promote sustainable development in all regions of the world.

Polytechnic institutions should foster research projects related to sustainability, encouraging collaboration among students, faculty, and industry partners. Research initiatives can range from exploring new materials and processes for energy-efficient construction to investigating the potential of renewable energy sources or developing innovative waste management solutions. By fostering a culture of sustainability-focused research, polytechnic institutions can contribute to the development of ground-breaking technologies and strategies that address environmental and societal challenges.

6. Conclusion

In conclusion, the integration of sustainability in polytechnic institutions is of paramount importance in shaping a greener and more equitable future. As centres of technical and vocational education, polytechnics have the

potential to drive positive change by equipping students with the knowledge, skills, and values necessary to address complex environmental, social, and economic challenges. To achieve this, polytechnic institutions must commit to incorporating sustainability principles across all aspects of their operations, including academic curricula, research initiatives, campus management, and community engagement. By establishing dedicated sustainability committees, developing comprehensive policies and action plans, and fostering a culture of sustainability, polytechnic institutions can serve as exemplary models for other educational institutions and contribute significantly to global sustainability efforts. As we collectively strive for a more sustainable world, it is vital for polytechnic institutions to embrace their pivotal role in nurturing the next generation of sustainabilityconscious professionals and innovators, ultimately driving the transition towards a greener future.

References

- Aleixo, A. M., Azeiteiro, U., & Leal, S. (2018). The implementation of sustainability practices in Portuguese higher education institutions. *International Journal of Sustainability in Higher Education*, 19(1), 146-178.
- Alshuwaikhat, H. M., & Abubakar, I. (2008). An integrated approach to achieving campus sustainability: assessment of the current campus environmental management practices. *Journal of cleaner production*, 16(16), 1777-1785.
- Alves, J., Carvalho, L., Carvalho, R., Correia, F., Cunha, J., Farinha, L., ... & Silva, J. (2015). The impact of polytechnic institutes on the local economy. *Tertiary Education and Management*, 21, 81-98.
- Asabere, N. Y., Acakpovi, A., & Quaynor, N. (2016). Encouraging Green ICT implementation strategies in polytechnic education in Ghana. *world*, 6, 7. doi: 10.5120/IJAIS2016451518.
- Briens, E. C., Chiu, Y., Braun, D., Verma, P., Fiegel, G., Pompeii, B., & Singh, K. (2023). Assessing sustainability knowledge for undergraduate students in different academic programs and settings. *International Journal of Sustainability in Higher Education*, 24(1), 69-95. doi: 10.1108/JJSHE-10-2021-0455.
- Chen, C. (2017). Science mapping: a systematic review of the literature. *Journal of data and information science*, 2(2), 1-40. doi: 10.1515/jdis-2017-0006.
- Fadeeva, Z., & Mochizuki, Y. (2010). Higher education for today and tomorrow: university appraisal for diversity, innovation and change towards sustainable development. *Sustainability Science*, 5, 249-256.
- Giesecke, S. (2013). Developing the skills of the future: Polytechnic education and training. In *World Conference on Technology, Innovation and Entrepreneurship* (pp. 27-34). Elsevier Science.

- Jabatan Pendidikan Politeknik. (2018). Amanat Ketua Pengarah Tahun Baru 2018. Retrieved December 21, 2022 from https://www.pkb.edu.my/images/amanat/ UCAPAN-AMANAT-TAHUN-2018-KP-JPPKK.pdf.
- Lee-Yaw, J. A., Kharouba, H. M., Bontrager, M., Mahony, C., Csergő, A. M., Noreen, A. M., ... & Angert, A. L. (2016). A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. *Ecology letters*, 19(6), 710-722.
- Lozano, R., Ceulemans, K., Alonso-Almeida, M., Huisingh, D., Lozano, F. J., Waas, T., ... & Hugé, J. (2015). A review of commitment and implementation of sustainable development in higher education: results from a worldwide survey. *Journal of cleaner production*, 108, 1-18.
- Lozano, R., Lukman, R., Lozano, F. J., Huisingh, D., & Lambrechts, W. (2013). Declarations for sustainability in higher education: becoming better leaders, through addressing the university system. *Journal of cleaner production*, 48, 10-19.
- Mochizuki, Y., & Fadeeva, Z. (2008). Regional centres of expertise on education for sustainable development (RCEs): An overview. *International Journal of Sustainability in Higher Education*, 9(4), 369-381.
- Nazif, A., Mustapha, A. K., & Ocheme, D. (2020). Appraisal of environmental sustainability studies in the quantity surveying curriculum. *Nigerian Journal of Technology*, 39(2), 607-612. doi: 10.4314/NJT.V39I2.32.
- Pardal, A., Romeira, T., & Durão, A. (2020, June). Eco Green Campus: Challenges and Opportunities: The Study Case of Polytechnic Institute of Beja. In *E3S Web* of Conferences (Vol. 171). EDP Sciences. doi: 10.1051/E3SCONF/202017101010.
- Sterling, S. (2004). Higher education, sustainability, and the role of systemic learning. In *Higher education and the challenge of sustainability: Problematics, promise, and practice* (pp. 49-70). Dordrecht: Springer Netherlands.
- Storey, M., Killian, S., & O'Regan, P. (2017). Responsible management education: Mapping the field in the context of the SDGs. *The International Journal of Management Education*, 15(2), 93-103.

doi: 10.1016/J.IJME.2017.02.009.

- Tilbury, D. (2011). Education for sustainable development: An expert review of processes and learning (p 132). Paris: UNESCO. Retrieved January 24, 2016 from http://unEfSoc.unesco. org/images/0019/001914/ 191442e. pdf.
- UNESCO. (2014). ESD + TVET: Promoting Skills for Sustainable Development. Retrieved November 23, 2018 from www.unesco.org/education.National Communication Report No. 3.
- UNESCO. (2017). Education for Sustainable Development Goals: Learning Objectives. *UNESCO*.

Van Eck, N. J., & Waltman, L. (2011). VOSviewer manual. *Manual for VOSviewer version*, 1(0).

Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competencies in sustainability: a reference framework for academic program development. *Sustainability science*, *6*, 203-218.