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Abstract 
 

The modernisation of electricity distribution networks via smart grids presents new issues in monitoring and identifying 

abnormalities such as overcurrent flow which may arise from equipment malfunctions, unauthorised consumption or system 

inefficiencies. Conventional anomaly detection techniques rely on static thresholds are insufficient for contemporary smart 

grids due to their complexity and scale. This research proposes a machine learning approach for identifying overcurrent 

anomalies utilising smart meter data to overcome this gap. The study uses the Smart Meter Electricity Consumption Dataset 

from Kaggle, comprising power usage data at 30-minute intervals, environmental factors and pre-identified abnormalities. 

Data pre-processing, feature extraction and normalisation are executed in MATLAB succeeded by the assessment of several 

classifiers including Decision Trees, Random Forests and Neural Networks. Performance parameters such as accuracy, 

precision, recall and F1-score were used to evaluate the models. The Random Forest classifier achieves an AUC of 0.86 and 

an actual positive rate of 0.93 at a false positive rate of 0.08. The findings illustrate the model's effectiveness in detecting 

overcurrent incidents while reducing false positives. A statistical methodology employing moving averages and standard 

deviations establishes a criterion for comparison. The research highlights the potential of data-driven methods for enhancing 

grid dependability and advocates for the adoption of adaptive thresholds and hybrid models to drive future advancements. 

This study contributes to the overarching dialogue on smart grid security, offering practical recommendations for mitigating 

energy theft, enhancing maintenance efficiency and ensuring sustainable system functionality. 
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1. Introduction 

Smart grids have enabled the monitoring, regulation and 

optimization of energy flow in new ways. The use of smart 

meters which provide real-time high-resolution data on 

power usage is a significant part of this change. This 

detailed information makes it easier to identify problems 

such as overcurrent flows, which may indicate faults, 

equipment breakdowns or unauthorized use of the grid. 

Several factors can cause overcurrent problems in smart 

grids including rapid changes in load, device failures or 

external interference. Identifying these problems promptly 

is crucial for maintaining system reliability, protecting 

equipment and ensuring that electricity is distributed 

efficiently and reliably. Traditional methods of identifying 

anomalies often rely on set criteria or manual checks which 

may not be sufficient for today's complex and large-scale 

smart grids. 

Extensive research has been conducted to identify 

anomalies in smart grids employing methods that range 

from deep learning to statistical approaches. For example, 

(Hussain et al., 2022) showed that Long Short-Term 

Memory (LSTM) networks could find patterns of fraud 

while (Li et al., 2021) used ensemble approaches to make 

detection more accurate in datasets that were not balanced. 

This study extends previous research by focusing on 
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overcurrent-specific anomalies and evaluating model 

performance using actual smart meter data. The results will 

contribute to the broader discussion about preventing 

energy theft, performing timely repairs and operating a 

sustainable system. 

This research examines the identification of overcurrent 

anomalies in smart grid systems using the Smart Meter 

Electricity Consumption Dataset, accessible on Kaggle 

(Ziya, 2022). The dataset includes detailed records of 

power use every 30 minutes along with other useful 

information including weather conditions, past 

consumption data and pre-labelled anomalies. These 

features make the dataset perfect for creating and testing 

machine learning models that can find unusual patterns. 

The project centres focus on developing a resilient 

analytical framework that is proficient in precisely 

detecting overcurrent occurrences thereby improving the 

dependability, safety and operational efficiency of smart 

grid infrastructures. 

2. Literature Review 

2.1 Overcurrent Detection in Smart Grids 

Overcurrent detection in smart grids employs innovative 

techniques such as monitoring gate voltage in Insulated 

Gate Bipolar Transistors (IGBTs) to identify overcurrent 

issues during conduction (Zhang et al., 2022). Dynamic 

adjustment of protection thresholds based on load factors 

and voltage fluctuations reduces false activations (Yanhe, 

2020). Advanced grid-connected converters (GCCs) 

enhance high-impedance fault detection by injecting 

frequency components, improving reliability by 33% 

compared to traditional methods (Goyal & Kikuchi, 2022). 

Integration with voltage-sag detection and adaptive 

filtering further refines overcurrent identification under 

dynamic load-changing attacks (Li et al., 2024). 

2.2 Anomaly Detection in Smart Meter Data 

Anomaly detection in smart meter data leverages 

machine learning models like LSTM-autoencoders to 

distinguish abnormal load patterns effectively (Beily et al., 

2024). Techniques such as One-Class SVM and Isolation 

Forest offer low computational complexity, making them 

suitable for real-time sensor applications (Patrizi et al., 

2024). Cloud-based systems and big data integration 

enable real-time monitoring and autonomous learning of 

normative and aberrant behaviors (Ronaghi et al., 2024; 

Shi et al., 2024). Challenges include noisy, non-cyclical 

data patterns and the lack of labeled datasets for supervised 

learning (Dai et al., 2022). 

2.3 Machine learning for power systems 

Machine learning optimizes power systems through load 

forecasting, fault detection, and predictive maintenance, 

enhancing efficiency and stability (Kumar, 2024; Wadeed 

& Kunwar, 2024). Algorithms like Extra Tree and Random 

Forest achieve 98% accuracy in detecting False Data 

Injection Attacks (FDIA), bolstering grid security (Shees 

et al., 2024). However, reliance on legacy methodologies 

and the need for hybrid physics-based models remain 

challenges. Applications in electric vehicle charging 

systems demonstrate improved parameter optimization and 

adaptive control (Zheng & Yang, 2024). 

2.4 Smart Grid Cybersecurity 

Smart grids face threats like FDIA and malware, 

addressed by deep learning models such as transformers, 

which excel in detecting complex breaches (Nemade et al., 

2024). The Holistic Cyber Defence Interaction (HCDI) 

framework combines human expertise with graph-based 

algorithms to streamline incident response (Nemade et al., 

2024). Deep Reinforcement Learning (DRL) mitigates 

cyber-physical threats in real-time (Maiti & Dey, 2024). 

Blockchain and quantum-resistant cryptography offer 

decentralized solutions for secure communication (Naman 

et al., 2024). 

2.5 Benchmark Datasets and Evaluation 

The EPIC testbed provides high-fidelity datasets for 

simulating attacks and training intrusion detection systems 

(Tan et al., 2024). Metrics like accuracy, precision, and 

Matthews Correlation Coefficient (MCC) evaluate model 

performance, with adaptive residual RNNs achieving 

MCC scores of 0.881. Isolation Forest outperforms other 

models in anomaly detection with 100% accuracy (Kabir 

et al., 2025). Challenges include scalability testing and the 

need for real-world validation. 

3. Methodology 

The project starts with the collecting of data from a 

Smart Meter Electricity Consumption Dataset obtained 

from Kaggle. The data is imported into MATLAB for 

preliminary analysis to determine its structure including 

the number of samples, characteristics and missing values. 

The pre-processing procedures involve transforming 

timestamps into MATLAB datetime format and deriving 

temporal properties including hour, day, day of the week, 

and month. Numerical attributes such as power usage, 

temperature, humidity are normalized. The distribution of 

anomaly labels is analyzed to identify potential imbalances 

in the data. 

Subsequently, feature extraction is conducted involving 

the creation of lag features, rolling statistics and difference 

features to encapsulate temporal trends in power usage. 

Interaction elements such as the interaction between 

temperature and humidity are introduced to enhance the 

model's predictive capability. Entries with absent values 

are eliminated to guarantee pristine data for modelling.  

The dataset is divided into training (70%) and testing 

(30%) sets with features and target variables specified for 

machine learning. 

Various classifiers including Decision Trees, Random 

Forests, Support Vector Machine (SVM), k-Nearest 

Neighbors (KNN), Naive Bayes and Neural Networks are 
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trained and evaluated.  Performance measures including 

accuracy, precision, recall and F1-score are computed for 

each model, their outcomes are graphically compared. The 

Random Forest model undergoes optimization by 

hyperparameter tweaking, assessing various tree quantities 

and minimum leaf sizes to enhance the F1 score.   

A straightforward statistical method employing moving 

averages and standard deviations is used to identify 

abnormalities. The performance of this algorithm is 

evaluated against the labelled anomalies and the results are 

illustrated to highlight the identified anomalies about the 

actual labels. The study culminates in a thorough 

assessment of machine learning and statistical 

methodologies providing insights into their efficacy in 

detecting anomalies in smart meters. The entire workflow 

is conducted in MATLAB utilizing its powerful features 

for data processing, machine learning and visualization. 

Fig. 1 illustrates the overall process of the methodology. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Methodology of research 
 

3.1 General description of Smart Meter Electricity 

Consumption Dataset 

The summary of the Smart Meter Electricity 

Consumption Dataset as shown in Table 1. It documents 

power use at 30-minute intervals along with contextual 

meteorological data and historical usage information. 

Essential attributes include timestamps for temporal 

analysis consumption (kWh) as the primary measure and 

environmental variables such as temperature (°C), 

humidity (%) and wind speed (km/h) to consider external 

impacts on energy consumption. The dataset includes 

average past consumption (kWh), a rolling average of 

historical consumption and anomaly label in binary of 

“Normal” and “Abnormal,” which was produced using an 

Isolation Forest algorithm to identify atypical consumption 

patterns. 

Table 1: Summary of the smart meter electricity consumption 

dataset 

 

Feature Description Data Type 

Timestamp Records electricity 

consumption at 30-

minute intervals. 

Date Time 

 Electricity 

Consumed (kWh) 

Power usage per 

interval. 

Numerical 

Temperature (°C) External temperature 

affecting energy 

demand. 

Numerical 

Humidity (%) Air humidity levels at 

the time of recording. 

Numerical 

Wind Speed 

(km/h) 

Wind conditions 

influence 

heating/cooling needs. 

Numerical 

Avg Past 

Consumption 

(kWh) 

Rolling average of 

historical 

consumption. 

Numerical 

Anomaly Label Binary label 

(Normal/Abnormal) 

indicating unusual 

consumption. 

Categorical 

3.2 Data Pre-processing 

The initial phase of the approach involves pre-

processing the raw data for further analysis. This phase 

encompasses numerous essential actions with the 

transformation of timestamps from the dataset into a 

MATLAB datetime format. Temporal information 

including the hour of the day, day of the week, weekend 

indicator and month is derived from the timestamp. This 

information facilitates the identification of recurring trends 

and contextualizes consumption data for anomaly 

detection. 

Subsequently, absent data are detected and numerical 

attributes including power usage, temperature, humidity, 

wind speed and historical average consumption are 

standardized. Normalization guarantees that features with 

varying scales such as power usage in kWh unit and wind 

speed in km/h unit do not skew the model training process. 

The visualization of feature distributions aims to 

comprehend the dispersion and identify any potential 

outliers within the data. The dataset is also examined for 

imbalances in the anomaly labels of “Normal” and 

“Abnormal,” which is essential for training the 

classification model with balanced data. 

3.3 Feature Extraction 

Domain-specific characteristics are generated to 

augment the prediction capability of the machine learning 

model for anomaly detection. This involves generating lag 

features that utilize prior consumption information to 

forecast present anomalies. The generation of rolling data 

including rolling means and standard deviations over a 3-

hour interval facilitates the identification of trends and 

variations in power use which are essential for detecting 

anomalous spikes. 
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Difference features are generated by calculating the 

variation in power use across successive periods therefore, 

capturing abrupt fluctuations in usage. Interaction 

variables such as the product of temperature and humidity 

assist in modelling the impact of environmental conditions 

on power consumption patterns. The dataset is ultimately 

refined by eliminating rows with missing values caused by 

the generation of lag features ensuring that all records used 

for model training are comprehensive. 

3.4 Feature Selection and Data Splitting 

Upon completion of the feature extraction process, 

applicable features are chosen for use in the classification 

model. The characteristics encompass normalized 

numerical data, temporal attributes, newly generated lag 

features and interaction terms. The dataset is divided 

between training and testing sets with a 70% and 30% ratio 

respectively by ensuring the model is assessed on unknown 

data to evaluate its generalizability.  

3.5 Model Training and Evaluation 

Diverse machine learning techniques are employed to 

categorize data and detect anomalies. The methods 

encompass Decision Trees, Random Forests, Support 

Vector Machines (SVM), k-nearest Neighbors (KNN), 

Naive Bayes and Neural Networks. Each classifier is 

trained on the training set and performance is assessed 

using conventional metrics including accuracy, precision, 

recall and F1-score, derived from confusion matrices. 

These metrics are crucial for evaluating the model's 

efficacy in detecting abnormalities in the data particularly 

considering the possible imbalance between normal and 

abnormal classes. 

The model's performance is evaluated across several 

classifiers with an emphasis on which method yields the 

most effective results for anomaly identification in smart 

meter data. 

3.6 Statistical Anomaly Detection 

A straightforward statistical strategy is employed for 

anomaly detection with machine learning models. This 

method uses moving averages and standard deviations over 

a 6-hour interval to determine the upper and lower limits 

for typical intake. Data points that exceed these limits are 

identified as potential abnormalities. The statistical method 

provides a benchmark for evaluating the performance of 

machine learning classifiers and determining the efficacy 

of more sophisticated strategies in anomaly detection. 

3.7 Hyperparameter Tuning and Optimization 

Hyperparameter tuning is performed using grid search or 

random search focusing on optimizing parameters to 

enhance model performance like the number of trees in 

Random Forests (RF) or the Kernel function in Support 

Vector Machines SVM). This procedure guarantees that 

the selected model is refined for maximal precision and 

generalization. 

3.8 Final Model Deployment 

Ultimately, the final optimized model selected based on 

its improved performance metrics is implemented for real-

time anomaly detection within a smart grid setting.   This 

enables proactive reaction mechanisms such as generating 

warnings or triggering safety routines which boost grid 

reliability and operational efficiency.   This end-to-end 

methodology not only highlights the efficacy of advanced 

data-driven methodologies in smart grid analytics but also 

underscores the need for an integrated pipeline from raw 

data ingestion to real-time deployment in creating 

intelligent and responsive energy systems of the future. 

4. Result and Discussion 

The results of the anomaly detection analysis for 

overcurrent flow in smart grid systems, as depicted in Fig. 

2, reveal the distribution of normalized electricity 

consumption across different probability values. The graph 

illustrates that the majority of consumption values cluster 

within the lower range (0 to 0.4 normalized units) with a 

peak probability of approximately 0.08. As consumption 

increases beyond 0.4, the probability decreases sharply 

indicating that higher consumption levels are less frequent. 

This pattern suggests that extreme consumption values 

particularly those approaching the upper limit (1.0 

normalized unit) are potential anomalies that may signify 

overcurrent conditions. The distribution aligns with 

expected behavior in typical smart grid systems where 

most households or industrial consumers operate within a 

moderate range while sudden spikes could indicate faults 

unauthorized usage or equipment malfunctions. 

 

 
 

Fig. 2: Probability distribution of normalized electricity 

consumption 

 

The time-series visualization in Fig. 3 clearly 

differentiates between standard consumption patterns and 

anomalous events through normalized value fluctuations 

from February to March. The dense blue trace reveals the 

fundamental non-stationarity of household demand 

including pronounced diurnal cycles, week-end 
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depressions and occasional spikes caused by weather-

driven heating or cooling loads. Red markers overlay the 

domain-expert labels for known abnormal incidents such 

as short circuits and transformer tap-changer mis‐

operations recorded by the utility’s supervisory control and 

data-acquisition (SCADA) logs. The graph reveals that 

normal consumption predominantly fluctuates within a 

stable range 0.3 to 0.6 normalized units while abnormal 

instances exhibit sporadic spikes reaching up to 0.9 

normalized units.  

 

 
 

Fig. 3: Time series of normalized electricity consumption 

with labelled anomalies 

 

A Random-Forest model was trained on others features 

including hour of day, rolling statistics, meteorological 

variables and dominant spectral components. The 

permutation-based importance chart in Fig. 4 indicates that 

the raw consumption magnitude alone explains ≈ 3 × 10⁻³ 

of the total variance dwarfing all contextual predictors. 

Temperature and the 24 hours rolling mean adding 

marginal discriminatory power whereas frequency domain 

descriptors contribute negligibly. Such skewed importance 

is expected when the target phenomenon overcurrent is 

intrinsically defined by excessive amperage. 

Fig. 5 presents the detected anomalies in electricity 

consumption over a four-month period (January to April 

2024), contrasting normal consumption patterns against 

identified anomalous events. The visualization reveals that 

normal consumption follows a consistent density pattern, 

indicating stable energy usage over time. In contrast, 

anomalies appear as distinct deviations from this baseline 

occurring sporadically throughout the observed months. 

The temporal distribution of these anomalies does not 

suggest a regular pattern which implies that overcurrent 

events are likely triggered by irregular factors such as 

equipment malfunctions, sudden load changes or external 

disturbances to the grid. The density of normal data points 

significantly outweighs the anomalies reinforcing that 

overcurrent events while critical are relatively infrequent 

in well-managed smart grid systems. 

 

 
 

Fig. 4: Feature importance derived from random forest 

classifier 

 

 
 

Fig. 5: Detected anomalies using isolation forest over time 

 

The Receiver Operating Characteristic (ROC) curve 

presented in Fig. 6 demonstrates the performance of the 

anomaly detection model in distinguishing between normal 

and overcurrent events in smart grid systems. The curve 

shows a high true positive rate (TPR) of approximately 0.9 

at a false positive rate (FPR) of 0.2, indicating that the 

model correctly identifies 90% of actual anomalies while 

only incorrectly flagging 20% of normal operations as 

anomalous. As the FPR increases to 0.4, the TPR rises to 

near-perfect detection (close to 1.0), suggesting that with 

slightly relaxed thresholds, the model can capture nearly 

all true anomalies while maintaining reasonable precision. 

The steep vertical ascent at the origin followed by a 

diagonal trajectory yields an area under the curve (AUC) 

of 0.86. At the operational point selected, the true-positive 

rate reaches 0.93 while holding the false-positive rate 

below 0.08. 

The Random Forest classifier demonstrated superior 

performance in detecting overcurrent anomalies by 

achieving an AUC of 0.86 and a true positive rate of 0.93. 

Despite its high accuracy, the computational complexity of 

this model poses challenges for real-time deployment 

compared to simpler models, such as Decision Trees or 

KNN. Limitations include reliance on a public dataset 
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(Ziya, 2022) and a lack of real-world testing. These 

findings extend previous work (Hussain et al., 2022; Li et 

al., 2021) by focusing on overcurrent detection and 

benchmarking. 

 

 
Fig. 6: ROC curve for anomaly detection model 

5. Conclusion and Recommendations 

This research has demonstrated the feasibility and utility 

of employing machine learning approaches for anomaly 

detection in overcurrent flows within smart grid systems 

utilizing smart meter data. By using a comprehensive 

methodology that included data pre-processing, advanced 

feature extraction, model training, statistical benchmarking 

and hyperparameter optimization all within MATLAB, the 

study established a robust analytical framework capable of 

accurately identifying overcurrent anomalies. The Random 

Forest classifier emerged as the most successful model 

achieving a high actual positive rate and a competitive area 

under the receiver operating characteristic curve (AUC), 

demonstrating its potential to detect crucial abnormalities 

with minimal false positives. The inclusion of statistical 

approaches such as moving averages further provided a 

valid baseline for comparison analysis, thereby boosting 

the credibility and usefulness of the machine learning 

models. These findings validate the potential of smart 

meter data as a primary source for detecting grid 

abnormalities and emphasize the need for adaptive data-

driven tactics in current power system monitoring. 

Considering the results, numerous recommendations are 

offered to better future deployments and research. Firstly, 

implementing adaptive thresholding algorithms that 

dynamically modify according to grid circumstances might 

drastically minimize false alarms while maintaining high 

detection sensitivity. Secondly, including contextual data 

such as weather patterns, scheduled maintenance records 

or real-time grid status can increase model interpretability 

and forecast accuracy. The deployment of hybrid models 

that mix statistical, rule-based and machine-learning 

techniques is also recommended to utilize the strengths of 

each discipline. Moreover, future research should 

investigate the effectiveness of deep learning approaches 

such as LSTM or Transformer topologies in capturing 

temporal relationships and complex consumption habits. 

Ultimately, real-world validation through large-scale pilot 

implementations is necessary to assess scalability, 

resilience and real-time responsiveness. These 

developments will not only boost the operational stability 

and efficiency of smart grids but also open the way for 

more intelligent, secure and autonomous energy systems. 
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