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Abstract

The modernisation of electricity distribution networks via smart grids presents new issues in monitoring and identifying
abnormalities such as overcurrent flow which may arise from equipment malfunctions, unauthorised consumption or system
inefficiencies. Conventional anomaly detection techniques rely on static thresholds are insufficient for contemporary smart
grids due to their complexity and scale. This research proposes a machine learning approach for identifying overcurrent
anomalies utilising smart meter data to overcome this gap. The study uses the Smart Meter Electricity Consumption Dataset
from Kaggle, comprising power usage data at 30-minute intervals, environmental factors and pre-identified abnormalities.
Data pre-processing, feature extraction and normalisation are executed in MATLAB succeeded by the assessment of several
classifiers including Decision Trees, Random Forests and Neural Networks. Performance parameters such as accuracy,
precision, recall and F1-score were used to evaluate the models. The Random Forest classifier achieves an AUC of 0.86 and
an actual positive rate of 0.93 at a false positive rate of 0.08. The findings illustrate the model's effectiveness in detecting
overcurrent incidents while reducing false positives. A statistical methodology employing moving averages and standard
deviations establishes a criterion for comparison. The research highlights the potential of data-driven methods for enhancing
grid dependability and advocates for the adoption of adaptive thresholds and hybrid models to drive future advancements.
This study contributes to the overarching dialogue on smart grid security, offering practical recommendations for mitigating
energy theft, enhancing maintenance efficiency and ensuring sustainable system functionality.
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1. Introduction

Smart grids have enabled the monitoring, regulation and
optimization of energy flow in new ways. The use of smart
meters which provide real-time high-resolution data on
power usage is a significant part of this change. This
detailed information makes it easier to identify problems
such as overcurrent flows, which may indicate faults,
equipment breakdowns or unauthorized use of the grid.

Several factors can cause overcurrent problems in smart
grids including rapid changes in load, device failures or
external interference. Identifying these problems promptly
is crucial for maintaining system reliability, protecting

equipment and ensuring that electricity is distributed
efficiently and reliably. Traditional methods of identifying
anomalies often rely on set criteria or manual checks which
may not be sufficient for today's complex and large-scale
smart grids.

Extensive research has been conducted to identify
anomalies in smart grids employing methods that range
from deep learning to statistical approaches. For example,
(Hussain et al., 2022) showed that Long Short-Term
Memory (LSTM) networks could find patterns of fraud
while (Li et al., 2021) used ensemble approaches to make
detection more accurate in datasets that were not balanced.
This study extends previous research by focusing on
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overcurrent-specific anomalies and evaluating model
performance using actual smart meter data. The results will
contribute to the broader discussion about preventing
energy theft, performing timely repairs and operating a
sustainable system.

This research examines the identification of overcurrent
anomalies in smart grid systems using the Smart Meter
Electricity Consumption Dataset, accessible on Kaggle
(Ziya, 2022). The dataset includes detailed records of
power use every 30 minutes along with other useful
information  including weather conditions, past
consumption data and pre-labelled anomalies. These
features make the dataset perfect for creating and testing
machine learning models that can find unusual patterns.
The project centres focus on developing a resilient
analytical framework that is proficient in precisely
detecting overcurrent occurrences thereby improving the
dependability, safety and operational efficiency of smart
grid infrastructures.

2. Literature Review

2.1 Overcurrent Detection in Smart Grids

Overcurrent detection in smart grids employs innovative
techniques such as monitoring gate voltage in Insulated
Gate Bipolar Transistors (IGBTs) to identify overcurrent
issues during conduction (Zhang et al., 2022). Dynamic
adjustment of protection thresholds based on load factors
and voltage fluctuations reduces false activations (Yanhe,
2020). Advanced grid-connected converters (GCCs)
enhance high-impedance fault detection by injecting
frequency components, improving reliability by 33%
compared to traditional methods (Goyal & Kikuchi, 2022).
Integration with voltage-sag detection and adaptive
filtering further refines overcurrent identification under
dynamic load-changing attacks (Li et al., 2024).

2.2 Anomaly Detection in Smart Meter Data

Anomaly detection in smart meter data leverages
machine learning models like LSTM-autoencoders to
distinguish abnormal load patterns effectively (Beily et al.,
2024). Techniques such as One-Class SVM and Isolation
Forest offer low computational complexity, making them
suitable for real-time sensor applications (Patrizi et al.,
2024). Cloud-based systems and big data integration
enable real-time monitoring and autonomous learning of
normative and aberrant behaviors (Ronaghi et al., 2024;
Shi et al., 2024). Challenges include noisy, non-cyclical
data patterns and the lack of labeled datasets for supervised
learning (Dai et al., 2022).

2.3 Machine learning for power systems

Machine learning optimizes power systems through load
forecasting, fault detection, and predictive maintenance,
enhancing efficiency and stability (Kumar, 2024; Wadeed
& Kunwar, 2024). Algorithms like Extra Tree and Random
Forest achieve 98% accuracy in detecting False Data

Injection Attacks (FDIA), bolstering grid security (Shees
et al., 2024). However, reliance on legacy methodologies
and the need for hybrid physics-based models remain
challenges. Applications in electric vehicle charging
systems demonstrate improved parameter optimization and
adaptive control (Zheng & Yang, 2024).

2.4 Smart Grid Cybersecurity

Smart grids face threats like FDIA and malware,
addressed by deep learning models such as transformers,
which excel in detecting complex breaches (Nemade et al.,
2024). The Holistic Cyber Defence Interaction (HCDI)
framework combines human expertise with graph-based
algorithms to streamline incident response (Nemade et al.,
2024). Deep Reinforcement Learning (DRL) mitigates
cyber-physical threats in real-time (Maiti & Dey, 2024).
Blockchain and quantum-resistant cryptography offer
decentralized solutions for secure communication (Naman
et al., 2024).

2.5 Benchmark Datasets and Evaluation

The EPIC testbed provides high-fidelity datasets for
simulating attacks and training intrusion detection systems
(Tan et al., 2024). Metrics like accuracy, precision, and
Matthews Correlation Coefficient (MCC) evaluate model
performance, with adaptive residual RNNs achieving
MCC scores of 0.881. Isolation Forest outperforms other
models in anomaly detection with 100% accuracy (Kabir
et al., 2025). Challenges include scalability testing and the
need for real-world validation.

3. Methodology

The project starts with the collecting of data from a
Smart Meter Electricity Consumption Dataset obtained
from Kaggle. The data is imported into MATLAB for
preliminary analysis to determine its structure including
the number of samples, characteristics and missing values.
The pre-processing procedures involve transforming
timestamps into MATLAB datetime format and deriving
temporal properties including hour, day, day of the week,
and month. Numerical attributes such as power usage,
temperature, humidity are normalized. The distribution of
anomaly labels is analyzed to identify potential imbalances
in the data.

Subsequently, feature extraction is conducted involving
the creation of lag features, rolling statistics and difference
features to encapsulate temporal trends in power usage.
Interaction elements such as the interaction between
temperature and humidity are introduced to enhance the
model's predictive capability. Entries with absent values
are eliminated to guarantee pristine data for modelling.
The dataset is divided into training (70%) and testing
(30%) sets with features and target variables specified for
machine learning.

Various classifiers including Decision Trees, Random
Forests, Support Vector Machine (SVM), k-Nearest
Neighbors (KNN), Naive Bayes and Neural Networks are
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trained and evaluated. Performance measures including
accuracy, precision, recall and F1-score are computed for
each model, their outcomes are graphically compared. The
Random Forest model undergoes optimization by
hyperparameter tweaking, assessing various tree quantities
and minimum leaf sizes to enhance the F1 score.

A straightforward statistical method employing moving
averages and standard deviations is used to identify
abnormalities. The performance of this algorithm is
evaluated against the labelled anomalies and the results are
illustrated to highlight the identified anomalies about the
actual labels. The study culminates in a thorough
assessment of machine learning and statistical
methodologies providing insights into their efficacy in
detecting anomalies in smart meters. The entire workflow
is conducted in MATLAB utilizing its powerful features
for data processing, machine learning and visualization.
Fig. 1 illustrates the overall process of the methodology.
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Consumption Dataset (Kaggle Dataset)
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Fig. 1: Methodology of research

3.1 General description of Smart Meter Electricity
Consumption Dataset

The summary of the Smart Meter Electricity
Consumption Dataset as shown in Table 1. It documents
power use at 30-minute intervals along with contextual
meteorological data and historical usage information.
Essential attributes include timestamps for temporal
analysis consumption (kWh) as the primary measure and
environmental variables such as temperature (°C),
humidity (%) and wind speed (km/h) to consider external
impacts on energy consumption. The dataset includes
average past consumption (kWh), a rolling average of
historical consumption and anomaly label in binary of
“Normal” and “Abnormal,” which was produced using an
Isolation Forest algorithm to identify atypical consumption
patterns.

Table 1: Summary of the smart meter electricity consumption

dataset
Feature Description Data Type
Timestamp Records electricity ~ Date Time

consumption at 30-

minute intervals.
Electricity Power usage per Numerical
Consumed (kWh)  interval.
Temperature (°C)  External temperature =~ Numerical

affecting energy
demand.
Humidity (%) Air humidity levels at ~ Numerical
the time of recording.
Wind Speed  Wind conditions  Numerical
(km/h) influence
heating/cooling needs.
Avg Past Rolling average of Numerical
Consumption historical
(kWh) consumption.
Anomaly Label Binary label ~ Categorical
(Normal/Abnormal)
indicating unusual
consumption.
3.2 Data Pre-processing

The initial phase of the approach involves pre-
processing the raw data for further analysis. This phase
encompasses numerous essential actions with the
transformation of timestamps from the dataset into a
MATLAB datetime format. Temporal information
including the hour of the day, day of the week, weekend
indicator and month is derived from the timestamp. This
information facilitates the identification of recurring trends
and contextualizes consumption data for anomaly
detection.

Subsequently, absent data are detected and numerical
attributes including power usage, temperature, humidity,
wind speed and historical average consumption are
standardized. Normalization guarantees that features with
varying scales such as power usage in kWh unit and wind
speed in km/h unit do not skew the model training process.
The visualization of feature distributions aims to
comprehend the dispersion and identify any potential
outliers within the data. The dataset is also examined for
imbalances in the anomaly labels of “Normal” and
“Abnormal,” which is essential for training the
classification model with balanced data.

3.3 Feature Extraction

Domain-specific characteristics are generated to
augment the prediction capability of the machine learning
model for anomaly detection. This involves generating lag
features that utilize prior consumption information to
forecast present anomalies. The generation of rolling data
including rolling means and standard deviations over a 3-
hour interval facilitates the identification of trends and
variations in power use which are essential for detecting
anomalous spikes.
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Difference features are generated by calculating the
variation in power use across successive periods therefore,
capturing abrupt fluctuations in usage. Interaction
variables such as the product of temperature and humidity
assist in modelling the impact of environmental conditions
on power consumption patterns. The dataset is ultimately
refined by eliminating rows with missing values caused by
the generation of lag features ensuring that all records used
for model training are comprehensive.

3.4 Feature Selection and Data Splitting

Upon completion of the feature extraction process,
applicable features are chosen for use in the classification
model. The characteristics encompass normalized
numerical data, temporal attributes, newly generated lag
features and interaction terms. The dataset is divided
between training and testing sets with a 70% and 30% ratio
respectively by ensuring the model is assessed on unknown
data to evaluate its generalizability.

3.5 Model Training and Evaluation

Diverse machine learning techniques are employed to
categorize data and detect anomalies. The methods
encompass Decision Trees, Random Forests, Support
Vector Machines (SVM), k-nearest Neighbors (KNN),
Naive Bayes and Neural Networks. Each classifier is
trained on the training set and performance is assessed
using conventional metrics including accuracy, precision,
recall and Fl-score, derived from confusion matrices.
These metrics are crucial for evaluating the model's
efficacy in detecting abnormalities in the data particularly
considering the possible imbalance between normal and
abnormal classes.

The model's performance is evaluated across several
classifiers with an emphasis on which method yields the
most effective results for anomaly identification in smart
meter data.

3.6 Statistical Anomaly Detection

A straightforward statistical strategy is employed for
anomaly detection with machine learning models. This
method uses moving averages and standard deviations over
a 6-hour interval to determine the upper and lower limits
for typical intake. Data points that exceed these limits are
identified as potential abnormalities. The statistical method
provides a benchmark for evaluating the performance of
machine learning classifiers and determining the efficacy
of more sophisticated strategies in anomaly detection.

3.7 Hyperparameter Tuning and Optimization

Hyperparameter tuning is performed using grid search or
random search focusing on optimizing parameters to
enhance model performance like the number of trees in
Random Forests (RF) or the Kernel function in Support
Vector Machines SVM). This procedure guarantees that
the selected model is refined for maximal precision and
generalization.

3.8 Final Model Deployment

Ultimately, the final optimized model selected based on
its improved performance metrics is implemented for real-
time anomaly detection within a smart grid setting. This
enables proactive reaction mechanisms such as generating
warnings or triggering safety routines which boost grid
reliability and operational efficiency. This end-to-end
methodology not only highlights the efficacy of advanced
data-driven methodologies in smart grid analytics but also
underscores the need for an integrated pipeline from raw
data ingestion to real-time deployment in creating
intelligent and responsive energy systems of the future.

4. Result and Discussion

The results of the anomaly detection analysis for
overcurrent flow in smart grid systems, as depicted in Fig.
2, reveal the distribution of normalized -electricity
consumption across different probability values. The graph
illustrates that the majority of consumption values cluster
within the lower range (0 to 0.4 normalized units) with a
peak probability of approximately 0.08. As consumption
increases beyond 0.4, the probability decreases sharply
indicating that higher consumption levels are less frequent.
This pattern suggests that extreme consumption values
particularly those approaching the upper limit (1.0
normalized unit) are potential anomalies that may signify
overcurrent conditions. The distribution aligns with
expected behavior in typical smart grid systems where
most households or industrial consumers operate within a
moderate range while sudden spikes could indicate faults
unauthorized usage or equipment malfunctions.
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Fig. 2: Probability distribution of normalized electricity
consumption

The time-series visualization in Fig. 3 clearly
differentiates between standard consumption patterns and
anomalous events through normalized value fluctuations
from February to March. The dense blue trace reveals the
fundamental non-stationarity of household demand
including pronounced diurnal cycles, week-end
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depressions and occasional spikes caused by weather-
driven heating or cooling loads. Red markers overlay the
domain-expert labels for known abnormal incidents such
as short circuits and transformer tap-changer mis-
operations recorded by the utility’s supervisory control and
data-acquisition (SCADA) logs. The graph reveals that
normal consumption predominantly fluctuates within a
stable range 0.3 to 0.6 normalized units while abnormal
instances exhibit sporadic spikes reaching up to 0.9
normalized units.

Electricity Consumption Over Time

Normal |
O Abnormal

Consumption (normalized)

Fig. 3: Time series of normalized electricity consumption
with labelled anomalies

A Random-Forest model was trained on others features
including hour of day, rolling statistics, meteorological
variables and dominant spectral components. The
permutation-based importance chart in Fig. 4 indicates that
the raw consumption magnitude alone explains =~ 3 x 1073
of the total variance dwarfing all contextual predictors.
Temperature and the 24 hours rolling mean adding
marginal discriminatory power whereas frequency domain
descriptors contribute negligibly. Such skewed importance
is expected when the target phenomenon overcurrent is
intrinsically defined by excessive amperage.

Fig. 5 presents the detected anomalies in electricity
consumption over a four-month period (January to April
2024), contrasting normal consumption patterns against
identified anomalous events. The visualization reveals that
normal consumption follows a consistent density pattern,
indicating stable energy usage over time. In contrast,
anomalies appear as distinct deviations from this baseline
occurring sporadically throughout the observed months.
The temporal distribution of these anomalies does not
suggest a regular pattern which implies that overcurrent
events are likely triggered by irregular factors such as
equipment malfunctions, sudden load changes or external
disturbances to the grid. The density of normal data points
significantly outweighs the anomalies reinforcing that
overcurrent events while critical are relatively infrequent
in well-managed smart grid systems.
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Fig. 4: Feature importance derived from random forest
classifier
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Fig. 5: Detected anomalies using isolation forest over time

The Receiver Operating Characteristic (ROC) curve
presented in Fig. 6 demonstrates the performance of the
anomaly detection model in distinguishing between normal
and overcurrent events in smart grid systems. The curve
shows a high true positive rate (TPR) of approximately 0.9
at a false positive rate (FPR) of 0.2, indicating that the
model correctly identifies 90% of actual anomalies while
only incorrectly flagging 20% of normal operations as
anomalous. As the FPR increases to 0.4, the TPR rises to
near-perfect detection (close to 1.0), suggesting that with
slightly relaxed thresholds, the model can capture nearly
all true anomalies while maintaining reasonable precision.
The steep vertical ascent at the origin followed by a
diagonal trajectory yields an area under the curve (AUC)
of 0.86. At the operational point selected, the true-positive
rate reaches 0.93 while holding the false-positive rate
below 0.08.

The Random Forest classifier demonstrated superior
performance in detecting overcurrent anomalies by
achieving an AUC of 0.86 and a true positive rate of 0.93.
Despite its high accuracy, the computational complexity of
this model poses challenges for real-time deployment
compared to simpler models, such as Decision Trees or
KNN. Limitations include reliance on a public dataset
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(Ziya, 2022) and a lack of real-world testing. These
findings extend previous work (Hussain et al., 2022; Li et
al., 2021) by focusing on overcurrent detection and
benchmarking.

ROC Curve
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Fig. 6: ROC curve for anomaly detection model

5. Conclusion and Recommendations

This research has demonstrated the feasibility and utility
of employing machine learning approaches for anomaly
detection in overcurrent flows within smart grid systems
utilizing smart meter data. By using a comprehensive
methodology that included data pre-processing, advanced
feature extraction, model training, statistical benchmarking
and hyperparameter optimization all within MATLAB, the
study established a robust analytical framework capable of
accurately identifying overcurrent anomalies. The Random
Forest classifier emerged as the most successful model
achieving a high actual positive rate and a competitive area
under the receiver operating characteristic curve (AUC),
demonstrating its potential to detect crucial abnormalities
with minimal false positives. The inclusion of statistical
approaches such as moving averages further provided a
valid baseline for comparison analysis, thereby boosting
the credibility and usefulness of the machine learning
models. These findings validate the potential of smart
meter data as a primary source for detecting grid
abnormalities and emphasize the need for adaptive data-
driven tactics in current power system monitoring.

Considering the results, numerous recommendations are
offered to better future deployments and research. Firstly,
implementing adaptive thresholding algorithms that
dynamically modify according to grid circumstances might
drastically minimize false alarms while maintaining high
detection sensitivity. Secondly, including contextual data
such as weather patterns, scheduled maintenance records
or real-time grid status can increase model interpretability
and forecast accuracy. The deployment of hybrid models
that mix statistical, rule-based and machine-learning
techniques is also recommended to utilize the strengths of
each discipline. Moreover, future research should
investigate the effectiveness of deep learning approaches
such as LSTM or Transformer topologies in capturing

temporal relationships and complex consumption habits.
Ultimately, real-world validation through large-scale pilot
implementations is necessary to assess scalability,
resilience and  real-time  responsiveness.  These
developments will not only boost the operational stability
and efficiency of smart grids but also open the way for
more intelligent, secure and autonomous energy systems.
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