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Abstract 
 

Accurate prediction of long-term beach profile changes is critical for sustainable coastal management, particularly in the 

face of climate change, sea level rise, and shifting wave conditions. This study evaluates the performance of two artificial 

neural network architectures Long Short-Term Memory (LSTM) and Multilayer Perceptron (MLP) in forecasting 15 years 

of annual beach profile evolution at Narrabeen-Collaroy Beach, Australia. Both models were trained using the Add and 

Repeat (AdRpt) method, an iterative forecasting approach that extends prediction horizons by incorporating previous outputs 

as new inputs. Key environmental variables included sea level trends, significant wave height, and wave period. Model 

performance was assessed across five profiles (PF1, PF2, PF4, PF6, and PF8). Results show that the LSTM consistently 

outperformed the MLP, achieving RMSE as low as 0.45 m and R² values up to 0.97. While LSTM captured temporal patterns 

effectively, both models struggled with abrupt morphological changes, such as the severe erosion observed at PF2 in 2001. 

Profiles near the intertidal zone also exhibited greater prediction variability. Furthermore, the study highlights that relying 

solely on R² can be misleading, as high R² may coincide with substantial RMSE and MAE values. A multi-metric evaluation 

approach is essential to ensure reliable model interpretation. These findings support the application of LSTM-based models 

for data-driven, long-term coastal planning and adaptive nourishment strategies. 

 

Keywords: - Beach profile variation, Artificial neural networks (ANN), Long Short-Term Memory (LSTM), Multilayer 

Perceptron (MLP) 
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1. Introduction 

Beaches serve as natural buffers, absorbing wave energy 
and protecting inland areas from hazards like erosion and 
flooding. They also support marine ecosystems and 
provide recreational and economic benefits (Stronge, 
2005). However, these environments are increasingly 
threatened by accelerating sea level rise, urban 
development, and changing wave climates (Hansen et al., 
2016 & Barnard et al., 2017). These pressures highlight the 
urgent need for accurate long-term predictions of coastal 
change to support adaptation and mitigation strategies 
(Nicholls & Cazenave, 2010). 

Traditional methods for predicting beach profile 
evolution, such as the Bruun Rule, process-based models, 

and behavior-oriented approaches, often struggle to 
capture the complexities of long-term coastal dynamics. 
While process-based tools like Delft3D can simulate 
detailed interactions, they require extensive data and high 
computational resources. Empirical models, in contrast, 
oversimplify by assuming equilibrium conditions and often 
overlook critical drivers such as wave variability and storm 
events. 

Artificial Neural Networks (ANNs) provide a data-
driven alternative, capable of modeling nonlinear 
relationships and learning from historical patterns. 
Although ANNs have been widely applied for short-term 
coastal predictions, their use in long-term forecasting, 
especially when accounting for sea level rise and wave 
transformations, remains limited. Prior studies using 
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Multilayer Perceptrons (MLPs) and Long Short-Term 
Memory (LSTM) networks show promise but often focus 
on short time horizons (Hashemi et al., 2010; López et al., 
2018 & Kim & Aoki, 2021). 

This study builds on recent work by Khan et al. (2024), 
who introduced the Add and Repeat (AdRpt) method, a 
novel approach that improves long-term prediction 
accuracy. By iteratively feeding predictions back into the 
input set, this method allows the model to “learn forward,” 
refining outputs without requiring large training datasets. 
When paired with LSTM and MLP architectures, the 
approach has demonstrated improved performance in 
forecasting beach profile and wave parameter changes over 
multi-decadal scales. 

Here, we apply MLP and LSTM models trained with the 
AdRpt method to predict 15-year beach profile changes at 
Narrabeen-Collaroy Beach, Australia, incorporating 
projected sea level rise, wave height, and wave period. 
These predictions are essential for informed coastal 
planning, sediment management, and climate resilience. 

2. Study Area 

The study area is Narrabeen-Collaroy Beach (see Fig. 1), 

a 3.6 km stretch on Sydney’s northern beaches, composed 

of fine to medium quartz sand and influenced by dynamic 

coastal processes. The beach morphology varies from a 

wide, flat profile at the exposed northern end to a narrower, 

steeper profile at the sheltered southern end. Known for 

complex dynamics such as storm surges, erosion, and 

sandbar migration, the beach has been extensively studied 

for over 30 years, offering a valuable long-term dataset on 

beach profiles and wave characteristics (Harley et al., 

2011). 

This site provides an excellent opportunity to study 

coastal evolution due to comprehensive, freely accessible 

data (http://narrabeen.wrl.unsw.edu.au/). As described by 

Turner et al. (2016), the dataset includes monthly beach 

profile surveys since 1976 across five profiles (PF1, PF2, 

PF4, PF6, PF8), alongside wave, tidal, and bathymetric 

data. Advanced methods such as Argus coastal imaging, 

airborne Lidar, UAV surveys, and bathymetric mapping 

complement traditional surveys, enabling detailed coastal 

process analysis. 

Offshore wave data have been recorded since 1992 by 

the Sydney directional wave rider buoy, measuring 

significant wave height (Hs), peak period (Tp), and 

direction (Dir). Gaps were filled using hourly hindcast 

data, with a high-resolution hindcast (1979–2014) 

extending the record. The SWAN model transformed 

offshore waves to near-shore conditions at 10 m depth, 

accounting for wave growth and breaking. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Location map of Narrabeen-Collaroy Beach, Sydney, 

Australia 

Wave rose analysis (see Fig. 2) reveals varied wave 
exposure: PF1, PF2, and PF4 face southeast waves, while 
PF6 and PF8 are influenced by easterly waves. PF1 
experiences the highest wave heights (up to 5.7 m), 
followed by PF4; PF8 has the lowest (max 4.4 m). These 
patterns are key to understanding the beach’s long-term 
evolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Wave rose plots for the profiles at Narrabeen-Collaroy 

Beach are shown. Panels (a) through (e) display the wave rose 

plots for PF1, PF2, PF4, PF6, and PF8, respectively. 
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Sea level data for Narrabeen-Collaroy Beach was 

sourced from NOAA’s Sea Level Trends website 

(https://www.tidesandcurrents.noaa.gov/sltrends/sltrends.

shtml). These local Relative Sea Level (RSL) trends 

combine sea level rise and vertical land motion, measured 

relative to a fixed land point.  

Fig. 3 shows the monthly sea levels with seasonal 

variations removed (accounting for temperature, salinity, 

winds, pressure, and currents), along with the long-term 

linear trend and its confidence interval.  

 

 

 

 

 

 
Fig. 3: Relative sea level trend of Narrabeen-Collaroy Beach, 

Sydney, Australia 

The data comes from the Sydney, Fort Denison tide 

gauge, about 16.5 km away, showing an RSL rise of 2.2 

mm/year with a 95% confidence interval of ±0.1 mm/year. 

This is based on monthly mean sea levels from 1979 to 

2022 and equals roughly 0.73 feet per 100 years.  

3. Methodology 

This study employs advanced machine learning 

techniques to predict long-term changes in beach profiles 

over a 15-year horizon, specifically Long Short-Term 

Memory (LSTM) networks and Multilayer Perceptron 

(MLP) networks. Long-term predictions will utilize the 

'Add and Repeat' methodology proposed by Rehman et al. 

(2023). This novel approach addresses the challenge of 

predicting time series data beyond the size of the training 

dataset by producing predictions in smaller, manageable 

increments. These increments are systematically added 

back to the training dataset, allowing the model to 

iteratively refine its forecasts until the desired forecasting 

horizon is achieved. This iterative process enhances the 

model's capability for extended predictions. 

The methodology section includes detailed explanations 

of data preparation, the proposed models, and model 

performance evaluation. These subsections collectively 

outline the approach taken for modeling and evaluating the 

predictions. 

3.1 Data Preparation 

Accurate data preparation is critical for successful 

machine learning modeling, especially when dealing with 

diverse datasets. For this study, wave data were 

transformed into significant wave heights and periods at 

the 1/3 and 1/10 levels. These metrics were chosen due to 

their strong influence on coastal erosion. Hs at 1/3, 

representing the average of the highest one-third of waves, 

captures both moderate and extreme events and has been 

used effectively in previous studies (Hashemi et al., 2010 

& López et al., 2018). Conversely, Hs at 1/10 emphasizes 

high-frequency extreme wave conditions that can intensify 

shoreline erosion by concentrating wave energy near the 

beach (Ruggiero et al., 1998). Kuznetsova et al. (2017) 

further demonstrated that increasing wave heights and 

longer wave periods significantly influence bottom profile 

deformation, justifying their inclusion as input predictors. 

These parameters were selected to improve the 

understanding of the wave–profile relationship and 

enhance erosion risk assessments. 

To ensure model accuracy, annual beach profile data for 

Narrabeen-Collaroy Beach was prioritized over monthly 

data, avoiding inconsistencies caused by missing or 

overlapping entries within certain months. Additionally, 

while most profiles extended to 100 meters, a few were 

shorter. To standardize input lengths, missing values 

beyond the last recorded point were estimated using linear 

forecasting. Although this completed the dataset for model 

training, it excluded deeper sections beyond the closure 

depth, which are important for sediment transport and 

long-term coastal change. Using the cleaned and 

standardized annual dataset, the model was trained on a 16-

year period (1979–1995) and used to generate beach 

profile forecasts for the following five years (1995–2000) 

across five profiles. These initial predictions were then 

added to the training set, allowing for model retraining in 

successive five-year intervals (2000–2005 and beyond) up 

to 2010. This iterative approach enabled assessment of the 

model’s ability to predict future profile conditions over 

time. The selected data period is based on continuous, 

high-quality measurements and the need to capture long-

term morphological patterns. As ANN models learn trends 

rather than depend on exact timing, this period supports 

effective pattern recognition. Combined with the Add and 

Repeat method, it allows predictions to extend into future 

years without affecting performance. 

3.2 Proposed model 

To predict beach profile changes, this study used Long 

Short-Term Memory (LSTM) networks and Multi-Layer 

Perceptron (MLP), chosen for their effectiveness in time 

series forecasting and pattern recognition both essential for 

understanding dynamic coastal systems. LSTMs, a type of 

recurrent neural network (RNN), are particularly suited for 

sequence prediction due to their ability to capture long-

term dependencies. The models were trained through 

extensive manual tuning and analysis. Over 52 simulations 

were conducted, systematically varying hyperparameters 

to test different configurations and ensure robustness in 

modeling beach profile dynamics. Both the LSTM and 

MLP models featured two hidden layers with 64 neurons 

each, as shown in Fig. 4.  
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Fig. 4: Proposed LSTM and MLP model 

This architecture is designed to effectively capture 

temporal patterns in the beach profile data. Model tuning 

involved adjusting batch size (16–64), learning rate (0.001 

or 0.01), training epochs (2500–7500), and dropout rates 

(10%–40%) to prevent overfitting. The final model setup 

0.001 learning rate, 20% dropout, and batch size of 32 

produced the best performance. 

a)  LSTM Layer 

LSTM networks outperform traditional RNNs in 

preserving long-term temporal information without 

complex tuning. Unlike standard RNNs, which often lose 

long-term dependencies due to gradient issues, LSTMs use 

gates forget, input (memory), and output to control 

information flow. As shown in Fig. 5, each LSTM cell has 

four layers that maintain and update the cell state (Ct), a 

memory that holds useful information over time. The 

forget gate controls retention of old data, the input gate 

adds new information, and the output gate produces the 

final output. This gating mechanism helps the model keep 

important dependencies across time steps, crucial for 

capturing beach profile changes. 

 

 
 
 
 
 
 
Fig. 5: Schematic concept of a standard LSTM containing four 

interacting layers 

 

 

b)  Dense Layer 

In the MLP model, dense (fully connected) layers play a 

central role in learning complex patterns. Each neuron in a 

dense layer performs a weighted sum of inputs followed by 

an activation function, typically ReLU, sigmoid, or tanh to 

introduce non-linearity (Goodfellow et al., 2016). Non-

linear transformations are crucial for modeling the intricate 

relationships between wave conditions and beach profile 

changes. Stacked dense layers help the model learn both 

simple and complex features. In this regression task, the 

final dense layer outputs continuous values representing 

profile elevation, thereby enabling detailed prediction of 

beach morphology. 

c)  Dropout Layer 

To address overfitting, dropout was applied during 

model training. This method randomly disables a subset of 

neurons and their connections, forcing the model to learn 

more generalized features instead of memorizing the 

training data. Dropout is particularly useful for 

regularizing deep learning models in medium-sized 

datasets. Studies by Lv et al. (2019) & Jeon et al. (2020) 

show that dropout increases model robustness and 

improves generalization by reducing over-dependence on 

specific neurons. It also slows the learning process slightly, 

which helps avoid convergence to suboptimal solutions 

and encourages more thorough learning of underlying data 

patterns. 

c)  Add and Repeat Method 

To extend the forecasting horizon beyond the training 

data, this study adopts the Add and Repeat method 

introduced by Khan et al. (2023). This iterative approach 

involves predicting in shorter increments (e.g., 5 years), 

then appending these predictions to the training dataset. 

The model is retrained after each step, using its previous 

outputs as inputs for the next cycle, until the full forecast 

period is reached. This method enables long-term 

predictions with limited historical data and allows the 

model to adapt gradually to evolving patterns. However, it 

can also lead to error accumulation, particularly in models 

like the MLP that are less capable of capturing long-term 

dependencies compared to LSTM networks. 

3.3 Model Performance Evaluation 

Three evaluation metrics were used to assess model 

performance: Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and the Coefficient of 

Determination (R²).  

RMSE measures the square root of the average squared 

differences between predicted and observed values, 

making it sensitive to large deviations. MAE calculates the 

average magnitude of errors without considering their 

direction, providing a straightforward interpretation of 

average prediction error. R² indicates the proportion of 

variance explained by the model. Each metric serves a 

distinct role: MAE is robust against outliers, RMSE 

penalizes large deviations, and R² shows overall model fit.  
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Together, these metrics provide a balanced view of 

model accuracy. The most reliable model was identified 

based on low RMSE and MAE values and an R² close to 1. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑡=1

𝑛
 (1) 

𝑅2 = 1 −  √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑡=1

∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑡=1

 (2) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1
 (3) 

where n is the total number of cases, xi is the 
targeted/observed value, and yi is the output/predicted 
value and 𝑥̅ is the mean value. 

4. Results and Discussion 

This study assessed the predictive performance of LSTM 

and MLP models in forecasting 15 years of annual beach 

profile changes at Narrabeen-Collaroy Beach, using the 

Add and Repeat (AdRpt) method to iteratively extend 

forecasts. The analysis focused on five representative 

profiles (PF1, PF2, PF4, PF6, and PF8), with model 

accuracy evaluated using R², RMSE, and MAE. This 

combination of deep learning and iterative forecasting 

represents a novel contribution to long-term coastal 

morphodynamic modelling. 

For PF1, characterized by its exposure to high wave 

energy, the LSTM model demonstrated a strong alignment 

with observed beach profile changes (see Fig. 6). Its 

predictions adeptly captured the complex profile dynamics 

with smaller errors, showcasing its adaptability to high-

energy environments. In contrast, the MLP model, while 

following similar overall trends, exhibited more 

pronounced deviations, especially in later years, 

suggesting a degradation in accuracy with iterative 

predictions. The R² values for both models consistently 

showed LSTM closer to 1, underscoring its superior ability 

to replicate observed profiles. Notably, the largest 

prediction discrepancies for PF1 occurred between 70 m 

and 100 m, a highly dynamic zone prone to significant 

morphological changes due to energetic wave activity, 

sediment transport, and storm impacts. The LSTM model's 

inherent strength in capturing temporal dependencies 

allowed it to perform better in these volatile regions, 

whereas the MLP's simpler architecture struggled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 6: Comparison of observed beach profiles with LSTM and MLP model predictions for PF1 (1996–2010)

In the case of PF2, both models yielded similar 

predictions, though the LSTM model generally performed 

better, evidenced by R² values closer to 1 as shown in  

Fig. 7. However, the MLP model showed a slight 

advantage in specific years like 1997, 2001, and 2005. A 

significant deviation for both models from observed data 
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was prominent in 2001, where the observed profile 

underwent substantial erosion exceeding 2 meters in some 

areas. This discrepancy highlights a challenge for both 

ANN architectures in handling abrupt, large-scale changes, 

potentially linked to storm events. Such sudden changes 

were also noted in other profiles, particularly PF2 and PF4, 

possibly due to their central locations making them more 

susceptible to multi-directional wave energy and sediment 

transport. Interestingly, PF2 appeared to recover by 2002, 

reverting to a pattern like 2000, suggesting a dynamic 

system capable of adjusting to disturbances. The 

substantial deviation at the lower part of the PF2 profile 

might also be influenced by the reliance on linear 

regression forecasting for data beyond the 80-meter mark 

in the observed dataset, which may not accurately represent 

actual conditions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 7: Comparison of observed beach profiles with LSTM and MLP model predictions for PF2 (1996–2010)

PF4 exhibited trends like PF2, with LSTM and MLP 

predictions generally aligning with observed data, as 

shown in Fig. 8. However, predictions for PF4 showed 

closer agreement across the profile compared to PF2. Like 

PF2, PF4 also experienced a sudden variation in 2001, 

though more moderate (around 1 meter). Notably, the 

LSTM predictions for PF4 closely matched the observed 

data, even during this period of abrupt change. Improved 

alignment at the bottom of PF4’s profile might be 

attributed to the availability of actual measurements up to 

100 meters.  

The LSTM model's relatively strong predictive 

performance, evidenced by a consistent R² value of 0.9 

across profiles like PF4 and PF2, and comparatively lower 

RMSE and MAE scores, demonstrates its capacity to 

identify long-term trends crucial for informing coastal 

management strategies. The iterative "Add and Repeat" 

methodology facilitated extended predictions, enabling the 

identification of temporal patterns in erosion and accretion, 

which is valuable for anticipating nourishment needs. 

PF6, a less elevated profile, is prone to greater variations 

despite lower wave energy, attributed to its proximity to 

the intertidal zone where tidal forces and sediment 

redistribution are more significant. As shown in Fig. 9, the 

LSTM model performed exceptionally well for PF6, 

closely matching observed data over 15 years and 

effectively capturing gradual accretion and minor seasonal 

variations with high accuracy, reflected in its R² values.  

The MLP model, while providing similar overall 

predictions, introduced noticeable deviations, particularly 

towards the 100m chainage mark, possibly due to its 

limited ability to capture complex spatial patterns. A 

profile shift in 2001 was observed in PF6, though less 

pronounced (<1 meter). A significant deposition of sand 

(2–3 meters) at the top of PF6’s profile between 2009 and 

2010 was also noted, the reasons for which are unclear 

from the dataset. PF6 appeared to be the most active 

profile, exhibiting substantial inter-annual variation, 

suggesting that even low-energy environments can 

experience significant morphological changes.
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Fig. 8: Comparison of observed beach profiles with LSTM and MLP model predictions for PF4 (1996–2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Comparison of observed beach profiles with LSTM and MLP model predictions for PF6 (1996–2010)

PF8, another relatively lower-elevation profile, proved 

challenging for both models (see Fig. 10). While the LSTM 

model outperformed MLP by capturing minor accretion 

trends and periodic variations with smaller errors and 

better R² values, both struggled to accurately match 

observed data. This difficulty can be attributed to PF8's 



37 

 

 

Khan et al. / Borneo Engineering & Advanced Multidisciplinary International Journal 

heightened variability due to its proximity to the dynamic 

intertidal zone, susceptibility to localized morphological 

processes, occasional storm surges, and minor 

hydrodynamic changes. The reliance on linear regression 

forecasting for the last three chainages of PF8 after 1995 

likely introduced uncertainties, further impacting 

predictive performance. The challenges in accurately 

predicting PF8's behaviour underscore the limitations of 

the current methodology in addressing localized variability 

influenced by external or unaccounted factors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Comparison of observed beach profiles with LSTM and MLP model predictions for PF8 (1996–2010)

Critically, this study underscores that relying solely on 

the coefficient of determination (R²) is insufficient for 

comprehensive model assessment. As highlighted by 

Onyutha (2020) & Rose & McGuire (2019), high R² values 

do not always indicate strong performance, nor do lower 

values necessarily imply poor predictions, especially given 

R²’s sensitivity to outliers. For example, in PF8, despite 

visible deviations between observed and predicted values, 

the LSTM model achieved R² values of 0.91 and 0.95 

during iterations 1 (1995–2000) and 2 (2001–2005), 

respectively. While these values may seem commendable, 

they mask underlying predictive errors that are better 

reflected in RMSE and MAE metrics. In contrast, the MLP 

model showed lower R² values (0.70 and 0.77) for the same 

periods, aligning more clearly with its higher error 

magnitudes. 

Table 1 presents the average prediction errors for each 

iteration period, providing a quantitative comparison of 

RMSE, MAE, and R² values for both LSTM and MLP 

models. These results reinforce the trends observed in the 

profile plots. The LSTM model consistently outperforms 

the MLP model, as evidenced by generally lower RMSE 

and MAE values and R² values closer to 1 across most 

profiles and iterations. Notably, the highest errors for both 

models occurred in PF2 during iteration 2 (2001–2005), 

corresponding to the sudden morphological changes in the 

profile discussed earlier. The table also shows that the 

MLP model's errors particularly RMSE and MAE increase 

more significantly in later iterations, indicating reduced 

effectiveness under the iterative “Add and Repeat” 

approach. This decline is likely due to its weaker ability to 

model long-term time-series dependencies. In contrast, the 

LSTM model maintains more stable and constrained error 

values over time, highlighting its robustness in capturing 

temporal dynamics and delivering more accurate long-term 

predictions. 

Overall, these findings highlight that strong R² values 

alone do not guarantee reliable predictions. Higher RMSE 

and MAE values particularly in dynamic profiles 

emphasize the need to evaluate models using multiple 

metrics. The LSTM model consistently demonstrates 

superior performance and reliability, maintaining lower 

error rates and effectively capturing temporal patterns. 

This makes it especially suitable for long-term coastal 

profile prediction using iterative methods like Add and 

Repeat. In contrast, the MLP model shows greater 

sensitivity to temporal complexity and tends to accumulate 

larger errors over time, limiting its effectiveness in 

morphologically variable environments.
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Table 1: Performance metrics of LSTM and MLP models for beach profile predictions (1995–2010) 

Profile Iter 
LSTM MLP 

RMSE MAE R2 RMSE MAE R2 

PF1 

1 0.45 0.30 0.97 0.65 0.50 0.94 

2 0.51 0.38 0.97 1.15 0.93 0.85 
3 0.71 0.60 0.95 1.32 1.09 0.83 

PF2 

1 0.54 0.42 0.97 0.74 0.61 0.94 

2 1.20 0.89 0.89 1.40 1.13 0.86 
3 1.04 0.79 0.92 1.30 1.07 0.88 

PF4 

1 0.62 0.47 0.96 0.73 0.61 0.95 
2 0.66 0.53 0.96 0.79 0.67 0.94 

3 0.82 0.72 0.94 1.00 0.89 0.91 

PF6 

1 0.66 0.48 0.91 0.85 0.68 0.87 
2 0.53 0.41 0.96 0.83 0.70 0.90 

3 0.75 0.53 0.91 1.03 0.79 0.85 

PF8 

1 0.61 0.48 0.91 1.15 0.87 0.70 
2 0.46 0.38 0.95 1.02 0.74 0.77 

3 0.84 0.73 0.77 0.91 0.71 0.77 

*Iter means iteration 

  RMSE, R2 and MAE (see equations (1) – (3)) 
 

The LSTM model’s ability to capture both accretion 

patterns and inter-annual variations, even under low-

energy conditions, is particularly relevant for beach 

nourishment planning. Accurate predictions of sediment 

deposition trends can help identify periods when 

nourishment may be necessary, supporting proactive and 

cost-effective coastal management (Dean, 1991). 

However, the model still faces limitations in predicting 

abrupt morphological changes, such as those observed in 

PF2 and PF4 during 2001. Addressing these challenges 

may require incorporating storm-related variables and 

exploring ensemble modeling approaches. Additionally, 

uncertainty introduced by linear regression estimates in 

parts of the profile data may limit model generalization. 

Despite these challenges, LSTM-based prediction 

frameworks hold significant potential to improve coastal 

planning by enabling forward-looking sediment 

management strategies and reducing reliance on 

emergency interventions. Their integration into adaptive 

management systems, especially when combined with 

high-resolution inputs from technologies like UAVs and 

LiDAR, aligns with the goals of sustainable coastal 

development (Hanson et al., 2003 & Nicholls et al., 2010). 

In summary, while LSTM models are highly promising for 

long-term beach profile forecasting, further enhancements 

are needed to address localized variability and abrupt 

changes, strengthening their role as data-driven tools in 

coastal resilience and nourishment planning. 

5. Conclusion and Recommendations 

This study demonstrates the potential of Long Short-
Term Memory (LSTM) models for predicting long-term 
beach profile variations, offering valuable insights for 
coastal management and beach nourishment projects. 
While the LSTM model outperformed the Multilayer 
Perceptron (MLP) in capturing gradual trends and inter-
annual variations, challenges remain in accurately 
predicting abrupt morphological changes linked to extreme 
events. The recursive simulation by adopting "Add and 
Repeat" methodology proved effective for extending 

prediction horizons, but localized variability and 
uncertainties in input data highlight areas for improvement. 
By integrating additional environmental factors and 
leveraging high-resolution datasets, LSTM-based 
predictions could be further refined to support proactive, 
sustainable nourishment strategies and enhance resilience 
to climate change impacts. Future studies could also 
explore combining the Narrabeen dataset with limited 
available Malaysian beach data to assess whether this 
approach can improve long-term predictions for Malaysian 
coastlines. 
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