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Abstract 
 

The electromyogram (EMG) is a bio signal which manifests in conjunction with muscle contraction. It can be used for 

neuro-muscular diagnosis, ergonomic analysis and machine control including prosthetics and teleoperation. Although in 

recent years there has been advances in detection and gesture prediction methods including artificial intelligence, machine 

learning still plays a fundamental role as the EMG is a waveform-based signal. As a biological signal, the EMG signal can 

vary throughout the day depending on the placement of the electrodes, muscle contraction level and fatigue of the individual. 

Moreover, due to the variability between individuals, a prediction model trained on an individual may not provide accurate 

prediction for another individual. Therefore, there is a strong motivation to study the variation of the EMG waveform and 

identify the most universally classifiable gestures. The main objective of this work is to measure variability of the forearm 

EMG signals between individuals and to classify the gestures based on training data from various forearm positions. In this 

work, the EMG signals of nine gestures of the hand was performed with the forearm in neutral, pronation and supination. 

The variability analysis was performed with normalized cross-correlation (NCC), then training models were developed with 

various time and frequency domain features and classifiers. Five-fold cross-validation was used to validate the classification 

accuracy. The main classification results show that the best classification accuracy can be achieved with the use of 10-Hz 

linear envelope and linear dependent analysis (LDA) classifier which yielded 89-92% accuracy for the forearm flex and 

extend motion. The NCC of these opposing gestures, also yielded a coefficient of 0.78 which shows a significant difference 

in the gestures. 

 

Keywords: - Electromyography, machine learning, artificial intelligence, machine control 
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1. Introduction 

The electromyogram (EMG) is a biological electric 

signal that manifests around the muscle when a contraction 

is performed. Muscle contraction continues if the EMG 

exists around the muscle. EMG-based techniques are 

capable of accurately distinguishing natural human motion 

such as subtle finger movements and wrist motions by 

directly sensing and decoding muscular activity (Inam et 

al., 2021). In recent years, artificial intelligence is used to 

identify or predict EMG signals. The steps involve data 

collection, preprocessing, feature extraction, model 

development, model training and classification (Jonge et 

al., 2024). 

In manufacturing and process engineering, EMG signals 

can be used in monitoring processes to identify activity, 

conditions, and capacities of workers in real-time EMG 

signals can be used in monitoring processes to identify 

activity, conditions, and capacities of workers in real-time 

(Olmo & Domingo, 2020a). For this common task, the 

gestures must be natural and easy to remember, 

comfortable and non-fatiguing, and provide the precision 

necessary to minimize error (Lin et al., 2019). 
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Production machines or workstations are not bounded to 

a single user and is usually operated by several different 

operators. In comparison, medical or domestic applications 

(usually robotic prosthetics) are tailor-made to specific 

users and their residual limbs. For this reason, reducing the 

training time due to multi-users is crucial. 

The EMG signal as a input signal is prone to variations 

due to hand orientation, muscle activation levels and 

fatigue. Therefore, gestures must be selected based on a 

consistent EMG production. The objective of this work is 

to determine the variability of the EMG signal across 

multiple subjects and classify the EMG signals of selected 

forearm gestures in various positions.  

2. Literature Review 

Production machines or workstations are not bound to a 

single user and are usually operated by several different 

operators. In comparison, medical or domestic applications 

(usually robotic prosthetics) are tailor-made to specific 

users and their residual limbs. For this reason, reducing the 

training time due to multi-users is crucial. 

To the best of knowledge, there is no recommendation 

on the number of individuals operating a production 

machine. Instead, it is determined by the production 

volume and complexity of the task, and availability of 

trained operators. EMG devices such as HMI collaboration 

systems and exoskeletons are specialized equipment in the 

workplace. While there is no data on the norms of the 

number of operators per device, simulated studies have 

been performed on samples of between three to seven 

operators. On the other hand, EMG studies on fatigue, risk 

and injury monitoring ranged from five to 46 individuals 

(Olmo & Domingo, 2020b). 

The EMG signal of a gesture produced by an individual 

is influenced by muscle recruitment during the gesture, and 

inter-subject variations exist in the EMG produced by a 

group of people. Many factors contribute to its variability. 

These factors can be linked to the person's physiological 

state (gender, age, presence of pain, fatigue or discomfort, 

or prevention of their onset), to their expertise and to the 

characteristics of the task to be performed (Gaudez et al., 

2016). Furthermore, variability in the pace, range of 

motion and arm position during repetitive tasks over long 

periods can differ by 15% (Srinivasan et al., 2015). It is 

difficult to perform the same task in the exact same manner 

twice. A simple task of moving an object into a target area 

by hand required 25 times of training to reduce the 

variability by 75% (Lametti et al., 2007). 

The variations in motion are directly related to the 

muscle recruitment, and the EMG produced will also 

reflect the variability of the gestures across a group of 

different operators. Therefore, the usability of the EMG 

system will require robustness towards the variability due 

to users, hand position and hand side (Khushaba et al. 

2016). 

 

3. Methodology 

The focus of the work here is the application of 

variability analysis and cross-validation in addition to 

classification. Fig. 1 shows the graphical methodology of 

the work done. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Graphical methodology of the experiment 

3.1 Experimental Setup 

For the experiment, EMG data was acquired from twenty 

subjects. Electrodes were placed radially round the lower 

forearm and the subjects performed six gestures as detailed 

in Fig. 2. The gesture sequence was recorded at least three 

times per position. In each sequence, individual gestures 

would last about 1.5 to 2 s, followed by a gap of equal 

length. Each sequence lasted between 30-40 s. Details of 

the procedure and setup can be found in (Fu et al., 2021). 

The collected signal database was re-evaluated with 

methods detailed in this work. The work here is performed 

with variability analysis and the signals were acquired with 

a custom-built differential amplifier with a common-mode 

rejection ratio of 93.36 dB while digitization was 

performed with the Texas Instruments NI-cDAQ 9178 

digital acquisition unit. Further details of the design and 

analysis of the bio signal amplifier used here can be found 

in Fu et al. (2023). 

 

 

 

 

 

 
 
 
 
 

Fig. 2: Selected gestures and general experimental setup 
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3.2 Feature Extraction 

The selected features for the study are detailed in  

Table 1. The commonly used features consisting of nine 

time-domain and three frequency domain types were 

chosen for their simple applications. 

Table 1: Total of vehicles for each entrance 

 
Time-Domain Features 

Moving average (MAV),  𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥𝑛|𝑁

𝑛−1  

Root mean square (RMS) 𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑛

2𝑁
𝑛−1  

Waveform length (WLT), 𝑊𝐿𝑇 = ∑ 𝑥𝑛+1 − 𝑥𝑖
𝑁−1
𝑛=1  

Integrated average (IAV) 𝐼𝐴𝑉 = ∑ |𝑥𝑛|𝑁
𝑁=1  

Autoregressive (AR) 𝐴𝑅 = ∑ 𝑎𝑖𝑥(𝑛 − 𝑖) + 𝑒(𝑛), 𝑛 = 0. . 𝑁 − 1𝑀
1  

𝑀 = 𝑚𝑜𝑑𝑒𝑙 𝑜𝑟𝑑𝑒𝑟 
𝑎𝑖 = 𝐴𝑅 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

 

Slope sign change (SSC) 𝑆𝑆𝐶 =
1

𝑁
∑ 𝑓[(𝑥𝑛 − 𝑥𝑛−1) × (𝑥𝑛 −𝑁−1

𝑛=2

𝑥𝑛+1)] 

𝑓(𝑥) = {
1, 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Linear envelope, 𝐿𝐸 = 𝑍𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ(|𝑥(𝑛)|), 𝑓𝑐 = 10 𝐻𝑧 

 

Frequency-Domain Features 

Mean frequency (MNF) 𝑀𝑁𝐹 =
∑ 𝑓𝑛𝑃𝑛

𝑁
𝑛=1

∑ 𝑃𝑛
𝑁
𝑛=1

 

Median frequency (MDF) 𝑀𝐷𝐹 =
1

2
∑ 𝑃𝑛

𝑁
𝑛=1  

Peak frequency (PKF) 𝑃𝐾𝐹 = 𝑓(𝑃𝑚𝑎𝑥) 

Sampling frequency = 5000Hz  

Window length = length of sample ≈ 2000 

Number of windows = 1 
Overlap = none 

3.3 Variability Analysis 

The repeatability of the data was assessed with and 

cross-correlation (Park et al., 2012 & Rodrigues et al., 

2017). The cross-correlation method is well-suited for 

measuring variation tendency between waveforms patterns 

across with value that can be interpreted in the form of a 

coefficient. Values ranging from 0.00 to 0.25 indicate no 

or only slight similarity between waveforms; values from 

0.25 to 0.50 suggest a fair degree of similarity; values from 

0.50 to 0.75 indicate moderate similarity, and values above 

0.75 correspond to highly similar. The mean normalized 

cross-correlation coefficient (NCC) per gesture is defined 

by equation (1). 

 ∑
1

20

[
 
 
 

∑ 𝑎𝑖𝑗.𝑏𝑖𝑗
6
𝑖=1

√∑ (𝑎𝑖𝑗
2 ).6

𝑖=1 ∑ (𝑏𝑖𝑗
2 )6

𝑖=1 ]
 
 
 𝑗=20

𝑗=1

 (1) 

Where a and b denote the two gestures to be compared 

against, and i and j are the feature and subjects, 

respectively. In other words, the cross-correlation per 

gesture is calculated by the six-channel features i of subject 

j against the features of every other subject. Each complete 

iteration then produces the NCC of the subject j against the 

remaining 19 subjects. Thereafter, the mean NCC was 

calculated over the cross-correlation of the 19 iterations. 

Since self-correlation of the same subject will result in a 

coefficient of 1.0, this result is not taken into calculation of 

the mean NCC to avoid skewing the mean towards a false 

high correlation. 

3.4 Classification 

For classification, the LDA, KNN and SVM classifiers 

were chosen because these classifiers are computationally 

efficient without sacrificing performance (Basak et al., 

2021). The LDA was used, because of its reliability and 

low computational cost (Geng et al., 2012). Table 2 shows 

the classifiers and their parameters. 

In the 5-fold cross-validated classification, the training 

and test data were pooled together and divided into five 

equal parts. The single feature extracted produced six 

feature values per gesture. The 11 elements of features 

extracted were concatenated horizontally to form a 66 

(6×11 features) dimension feature vector. The rows consist 

of the gestures per trial, which consists of 9 gestures per 

trial.  

Table 2: Selected classifiers and their parameters 

 KNN DA SVM 

Classifier 

model tuning 

parameters 

Number of 

neighbours: 4 

Distance: 
Euclidean 

 

 

Type: 

Linear 

Kernal: 

Gaussian 

Kernal scale: 
1.64 

Box 

constraint: 5 

Validation 5-fold cross validation 

For intra-subject classification, the classifier model was 

trained with 5 sets of training data, each set consisting of 9 

individual gestures. while one remaining of data was 

reserved for testing purposes, as shown in Table 3. For 

instance, the subject-specific classifier model for the 

neutral position for both left and right hands DN{R,L} 

position was trained with 5 DN{R,L} datasets consisting of 5 

trials. Since there were 5 trials, a total of 45 (5 × 9) gestures 

were obtained and arranged in rows according to gestures.  

In supervised learning, the feature vectors were 

concatenated in rows of gestures then by trials, where each 

row of feature vector was assigned a gesture class. The test 

data consists of the same data as the training set, however 

5-fold cross validation applied to ensure ideal data fitting. 

For the position-independent test, DN{R,L} was used as the 

training data while DP{R,L} and DS{R,L}were the test data. 

For the hand-exchange classification, the left-hand data in 

DN, DP and DS, of the LH{DN, DP, DS}  was the training data 

while the right-hand data RH{DN, DP, DS} and vice versa. 

Statistical analysis was performed with one-way 

repeated-measure analysis of variance (rmANOVA) to 

determine the significance of the results in terms of the 

effect of multi-users, hand rotation, hand-exchange and to 

evaluate the performance of the feature-classifier choice. 

Bonferroni correction was used to evaluate the pairwise 
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classification accuracy between each classifier-feature 

combination. All statistical analysis was performed with 

Matlab. 

Table 3: Training and test data for intra-subject classification 

4. Result and Discussion 

4.1 Variability Analysis 

The results of the inter-gesture mean NCC is presented 

in Table 4. The mean NCC obtained for most gestures are 

above 0.90 for all gestures, except for the OPN and CLS 

gestures which ranged from 0.90 to 0.95. This is 

interpreted as a low similarity in the inter-subject features 

of these gestures and indicates a lower classification result 

compared to other gestures. Hence it is necessary to 

perform the classification with various features and 

classifiers, as some features are less sensitive to inter-

subject variations. Not tabulated in the results are the NCC 

on two different gestures. 

The NCC of two opposing gestures, FLX and EXT 

features, yielded a coefficient of 0.78. This shows that the 

features of these two gestures are completely different in 

terms of pattern. Therefore, the reported NCC is 

interpreted with the following guidelines: 0.97 to 1.00 – 

nearly identical to identical, 0.9 to 0.96 – highly similar, 

0.85 to 0.89 – similar, below 0.85 – different signal.  

Table 4: Inter-gesture mean 20-subject mean NCC 

RmANOVA showed a high p-value of almost 1.00 

showing the statistical difference between the feature 

extracted from all subjects is insignificant. In other words, 

there is a low degree of variation in the features of a gesture 

among the subjects. Since ANOVA measures the variation 

of data in terms of means and SD rather than pattern, the 

reported p-value does not fully describe the inter-gesture 

variation. Since the features were normalized, all gestures 

had an amplitude range of between 0.00 to 1.00 with a 

similar mean and median. However, the high value serves 

to ensure that the variation in terms of amplitude is 

minimal. 

In the inter-position, between-hand mean NCC 

calculation shown in Table 5. The mean NCC per gesture 

was calculated in a similar manner but with the signals 

from the two compared conditions (position and hand). 

The mean NCC was obtained by averaging the means of 

the NCC of all nine gestures. The inter-position, between 

hand rmANOVA reported a high p-value indicating that 

there is little variation in the amplitude of the features. To 

test the significance of the between-condition NCC, the 

conditions were arranged into the following categories: i) 

same-hand, same position ii) same position-different hand, 

iii) different-hand, iv) different position. Bonferroni post-

hoc test reported that the mean NCC of the four categories 

in order are i) 0.99 (p=0.01), ii) 0.92 (p=0.01) iii) 0.89 

(p=0.01) and iv) 0.88 (p=0.01) respectively. The results 

revealed that the features are similar in the same position-

hand and varied during rotation and the data of the left and 

right hand are generally not interchangeable. However, 

there may be feature-classifier combinations that are robust 

to these variations. 

Table 5: Inter-position and between-hand mean NCC 

 

 

 

Condition Number of training 

data sets, (size) 

Number of test data set, 

(size) 

 

Reference 
(same 

hand, 

same 
position) 

DN{R,L} 

DP{R,L} 
DS{R,L} 

5 (1 

subject × 

5 trials × 
9 gestures 

=45) 

DN{R,L} 

DP{R,L} 
DS{R,L} 

1 (1 subject 
× 1 trials × 

9 gestures 

=9) 

     

Inter-
position 

(same 

hand, 

varied 

position) 

DN{R,L} 

 

5 (1 

subject × 
5 trials × 

9 gestures 

=45) 

DP{R,L}, 

DS{R,L} 

 

 

5 (1 subject 

× 5 trials × 

9 gestures 

=45) 

     
Between-

hand  

( (a) 
different 

hand, 

same 
position, 

(b) 

different 
hand, 

varied 

position) 

LH{DN,DP,DS} 

RH{DN,DP,DS} 

5 (1 
subject × 

5 trials × 

9 gestures 
=45) 

RH{DN,DP,DS} 

LH{DN,DP,DS} 

5 (1 subject 

× 5 trials × 
9 gestures 

=45) 

Cross-validation: 5 fold 

 DNL DPL DSL DNR DPR DSR 

DNL 0.99      
DPL 0.95 0.99     

DSL 0.93 0.91 0.99    

DNR 0.89 0.89 0.88 0.99   
DPR 0.86 0.88 0.87 0.92 0.99  

DSR 0.87 0.86 0.86 0.94 0.95 0.99 

Inter-subject rmANOVA significance (p≈1.0), except for OPN 
(p≈0.94), CLS (p≈0.94) 

 DNL DPL DSL DNR DPR DSR 

FLX 0.98 0.98 0.97 0.98 0.98 0.98 

EXT 0.99 0.99 0.99 0.99 0.99 0.99 
ABD 0.98 0.98 0.97 0.97 0.96 0.96 

ADD 0.95 0.98 0.98 0.97 0.99 0.99 

OPN 0.93 0.91 0.92 0.93 0.91 0.92 
CLS 0.93 0.92 0.91 0.93 0.91 0.90 

FIN 0.96 0.95 0.95 0.98 0.96 0.94 
OKE  0.97 0.95 0.96 0.98 0.97 0.96 

TMB 0.96 0.96 0.95 0.96 0.95 0.94 

Inter-subject rmANOVA significance (p≈1.0), except for OPN 

(p≈0.94), CLS (p≈0.94) 
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4.2 Intra-Subject Classification Results 

The intra-subject classification was performed to assess 

the classification accuracy on a single subject, which 

serves as a reference. Table 6 shows the overall 

classification accuracy of all the gestures in all conditions. 

The training data and test data is outlined in the rows and 

columns, respectively. For example, gestures classified 

with training data DNL and test data DNL can be found in 

row 1, column 1 (90.3%), while the results for training data 

DPR and test data DNR is situated at row 5, column 4 

(84.7%). The classification accuracy reported was 

calculated as the percentage of gestures classified correctly 

over the 20 subjects for every 9 gestures. 

The reference group, marked by the diagonal line, 

consists of classification of gestures trained and tested in 

the same hand and position. The mean classification of the 

reference group is 91.73%, which is the highest among the 

three groups. The second group, inter-position consists of 

gestures classified in the same hand in different positions 

with the training and test data rotated around the DN, DP 

and DS positions had a mean of 85%. The third group, 

between-hand, yielded the lowest mean classification 

accuracy of 68%. RmANOVA reported that the difference 

between the classification accuracy between the three 

groups are significant, p<0.01 in all conditions. The 

standard deviation and p value indicate the variation of the 

classification accuracy of the classification groups. The 

reference group gestures are not affected by the hand 

rotation. Therefore, its classification result is the highest, 

with a lower variation as indicated by the lower standard 

deviation (6.45) and p value (0.65). An increase in the 

standard deviation and p value of the inter-position and 

between-hand groups shows a significant increase in 

variation in the classification results among the subjects 

and gestures. 

Table 6: Mean inter-position and between-hand classification 

results, calculated over 20 subjects, all feature-classifier 

combinations 

 

With reference to Fig. 2, the overall classification 

accuracy by gestures for the intra-subject condition was 

high, except for the between-hand condition. In the 

reference condition, all gestures were able to be classified 

with high accuracy of 92% mean, regardless of feature or 

classifier. Even with a small trial sample (n=5), the EMG 

signals are produced by one person and, therefore, 

consistent across the trials. Comparing the features in Fig. 

3, all features were able to produce high classification 

results of over 90% regardless of gestures and classifiers. 

However, due to variability introduced by the inter-

position and between-hand conditions, the mean 

classification dropped to 87% and 70% respectively. The 

classifier-wise comparison results shown in Fig. 4 show 

LDA has the highest performance (85%) compared to 

KNN (mean 81%) and MVSM (mean 70%). However, the 

MVSM had the smallest drop in classification accuracy 

across the three conditions. 

For intra-subject classification, the high classification 

results are largely attributed to the similar EMG signals 

produced by one person. Since the electrode placement and 

physiological factors are constant, the discrepancies that 

caused misclassification were due to contraction force. 

When further variabilities were introduced in the inter-

position classification, the classification accuracy was 

lower due to muscle activity from the pronator muscles. 

Although the finger is controlled by deep muscles which 

rotate with the wrist, the finger gestures did not experience 

a reduction in classification accuracy. This was because in 

an untargeted electrode configuration, the EMG signals 

were taken collectively, and gestures performed in rotation 

were recorded independently of the gestures in neutral 

position. 

 

 

 

 

 

 

 

 

 
Fig. 2: Intra-subject classification results by gestures, averaged 

across all features (mean SD: 8.59) 

 

 
 
 
 
 
 
 
 
 

Fig. 3: Feature-wise classification accuracy, averaged across all 

gestures (mean SD: 10.25) 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Intra-subject classification results by gestures, averaged 

across 

 

Testing data 

T
ra

in
in

g
 d

at
a 

 DNL DPL DSL DNR DPR DSR 

DNL 94.3 83.6 85.4 67.3 64.5 65.2 

DPL 87.4 90.1 83.2 63.4 71.4 68.2 

DSL 85.6 84.6 89.1 64.2 65.3 82.5 
DNR 80.9 67.8 69.2 93.2 86.4 83.6 

DPR 73.1 72.8 68.3 84.7 91.5 85.6 

DSR 69.0 67.0 67.4 86.6 88.7 92.2 

Within-group standard deviation and  rmANOVA p-value  
Reference: 6.45 (p=0.63) 

Inter-position: 8.36 (p=0.56) 

Between-hand: 11.32 (p=0.47)  
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4.3 Best Achievable Classification Accuracy 

The combination of 10 Hz linear envelope feature and 

LDA classifier was consistent in providing the highest 

achievable classification results. The LDA had the 

advantage of a lower computation cost. In comparison, the 

KNN classifier requires the configuration of the k value, 

which must be optimized through cross-validation. In this 

study, the MVSM classifier was slow and did not provide 

good classification results. 

With the 10 Hz – LDA combination, it is possible to 

achieve up to 90% for the FLX, EXT, ABD, ADD gestures 

in all conditions (reference, inter-position and between-

hand). On the other hand, the frequency-domain features 

MNF and MDF could also provide high classification 

results, however with a margin error which is larger. Thus, 

the error margin is an important factor to consider because 

it will increase as the number of gestures or degree of 

freedoms increase. The best classification results for the 

intra-subject condition with 10 Hz – LDA is shown in 

Table 7 

Table 7: Best achievable classification accuracy with 10Hz – 

LDA 

 

F
L

X
 

E
X

T
 

A
B

D
 

A
D

D
 

O
P

N
 

C
L

S
 

F
IN

 

O
K

E
 

T
M

B
 

M
ea

n
 

Referen

ce 

89 92 90 81 70 64 78 88 80 80 

Inter- 
position 

82 91 91 82 63 53 65 84 75 76 

Between

-hand 

80 80 83 63 42 51 47 53 46 63 

4.4 Cross Validation Results 

Fig. 5 shows the comparison of both validation methods 

for the intra-subject classification. In all conditions, the CV 

method had marginally higher classification results, 

however, there was little difference in the classification 

accuracy of both methods (mean difference = 3%). This 

shows that the training and test data in both validation 

methods had highly similar features, which was expected 

as the EMG data from one subject is highly consistent.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 5: Comparison of hold-out validation and 5-fold cross-validation for the intra-subject classification 

 

5. Conclusion and Recommendations 

In this work, the variability of the EMG was obtained 

with the normalized cross-correlation (NCC) was used to 

normalize the signal. The gestures OPN and CLS were 

found to have higher variability due to the contracting 

force, which subsequently affected the overall 

classification results. 

The intra-subject classification served as a reference to 

mark the maximum possible classification results. In the 

intra-subject classification, the classification results were 

high for gestures in the reference and inter-position 

conditions. However, the classification accuracy dropped 

with hand-exchange. The variability of the OPN and CLS 

gestures did not affect the overall classification results as 

they were consistent across a single subject. 

In this work, the classifier model is trained in individual 

subjects. For future work, the scope of the work can be 

expanded to perform classification on a subject with a 

model trained on another subject. 

Author Contributions: The research study was carried 

out successfully with contributions from all authors. 

Conflicts of Interest: The authors declare no conflict of 

interest. 

Mean classification accuracy 

Reference Inter-position Between-hand 

Hold-out: 92% Hold-out: 84% Hold-out: 73% 
5 fold CV: 95% 5 fold CV: 91% Hold-out: 79% 
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