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Abstract 
 

The water-to-cement ratio (w/c ratio) is a critical parameter in the formulation of mortar and concrete. The w/c ratio is a 

fundamental factor that significantly affects the performance and properties of the final product. This study investigated the 

influence of different w/c ratios and curing conditions on concrete properties. The preliminary test was conducted on coarse 

and fine aggregate by complying with ASTM C33. The concrete proportion ratio of 1:2:4 was adopted by mixing with 

various amounts of distilled water to create ratios of 0.5, 0.6, 0.7, and 0.8. The hardened concretes were divided into two 

types of curing conditions (pond curing and burlap curing). Compressive strength, sorptivity, and carbonation tests were 

conducted by complying with the concrete’s standard procedure to determine the concrete's properties. This research has 

revealed that a higher w/c ratio contributes to higher porosity and negatively impacts its strength. The higher w/c ratio has 

decreased compressive strength and increased water filtration (sorptivity) and carbon dioxide ingression (carbonation). Based 

on the results, lower w/c ratio with pond curing showed better concrete physical and chemical properties at 28th days. 
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1.  Introduction 

Concrete is a composite material composed of cement, 

water, aggregates, and often additional additives. The 

properties of concrete that are resistant to extreme 

weather, durable, insect-resistant, non-flammable, and 

adaptable for different designs and finishes make concrete 

a prime choice of building materials by architects and 

engineers. 

In concrete mixing, the water-to-cement (w/c) ratio is 

considered one of the major factors influencing concrete 

properties. During the hydration phase, water will react 

with the cement compound to form calcium-silicate 

hydrate (C-S-H) and calcium hydroxide (Ca(OH)2). 

Inadequate water will cause poor workability (Masum & 

Manzur, 2019), increase porosity (Jagtap et al., 2020), 

greater permeability (Serag et al., 2019), cracking (Huang 

et al., 2022) and lead to a loss in strength of concrete. In 

addition, Oikonomopoulou et al. (2022) also point out 

that the compressive and split tensile strength reduced to 

15 % and 26.9 %, respectively, due to the low w/c ratio. 

The w/c ratio may vary, influenced by raw materials 

(types of binder, fine and coarse aggregate properties, 

water), mix design proportions, and admixtures. It was 

believed that the size and types of raw material would 

influence the amount of water needed and change the 

mechanical properties of concrete. Nematollahzade et al. 

(2020) investigated the effect of the w/c ratio on self-

compacting concrete and discovered that as the w/c ratio 

increased, it gave a favourable workability feature, but the 
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compressive strength declined. The study by Langhah & 

Saand (2020) stated that the 0.5 w/c ratio was 

incompatible with the increasing amount of eggshell 

powder as a partial cement replacement. Rashad & Sadek 

(2020) found that concrete with 50 % granulated blast-

furnace slag based on a w/c ratio of 0.5 gives concretes 

the highest mechanical strength. Sangeetha et al. (2022) 

reported a concrete mix design of 5 % of seashell powder 

and 10 % seashells aggregate with 0.5 w/c ratios showed 

the highest compressive strength among modified 

concrete in 90 days period curing days but still lower than 

the control specimen. 

Other than quantity, water quality in concrete mixing 

is important in determining concrete properties. Water 

consists of impurities such as chloride, sulphate, organic 

matter, dirt, clays, biological contaminants, and metals 

that will influence the mechanical strength, setting time 

and durability (Kucche et al., 2015). Ali et al. (2020) 

studied the effect of well water in mixing and curing 

concrete. They found that the strength of concrete is 

lower and decreases linearly when it is cured using well 

water. Then, Hassani et al. (2020) revealed in the High-

Resolution Scanning Electron Microscopy (HRSEM) 

image that the increasing penetration of chloride ions is 

due to increasing voids and porosity found on the surface 

and its consequence of impurities in wastewater. 

During the hydration process, the formation of 

calcium silicate hydrate (C-S-H) is a consequence of the 

reaction between calcium oxide (cement) and silica (sand) 

and water as an activator. The properties of C-S-H play a 

critical phase in determining the mechanical strength of 

concrete (Li et al., 2021). Zheng et al. (2021) have 

revealed higher w/c ratio creates a higher number and size 

of pore spaces in scanning electron microscopy (SEM) 

images. In addition, water in capillaries evaporated to the 

surroundings due to lower relative humidity and high 

temperatures. This condition may influence void ratios. 

Concrete curing is a technique for moistening concrete 

during hydration to develop desirable strength. During the 

early hydration stage, the evaporated water might not be 

replaced adequately (Allam et al. 2020; Khan et al. 2021). 

The curing procedure may vary depending on the 

concrete's size, form, or in-situ planting. Previous studies 

employed the wet burlap method, ponding method, plastic 

membrane method, sprayed method, and others (Nasir et 

al., 2022; Nadir et al., 2022; Secanellas et al., 2019; Ren 

& Houben, 2020). 

Numerous studies have been conducted on concrete, 

but the characteristics of different w/c ratios and curing 

conditions are not fully understood. This research 

investigated the effect of different curing conditions 

(pond curing and burlap curing) with different w/c ratios 

(0.5, 0.6, 0.7 and 0.8) to concrete’s physical properties 

(workability, compressive strength, sorptivity) and 

chemical properties (carbonation), from the early 

hardening stage up to 28 days. The mixing design ratio 

1:2:4 (cement:fine aggregate:coarse aggregate) was 

adopted. All concrete specimens were cured with distilled 

water at ambient temperature to avoid impurities or 

temperatures that might interfere with the experimental 

results. 

2.  Materials and Methodology 

The material used is cement (ASTM C150 – Standard 

Specification for Portland Cement), fine and coarse 

aggregate (ASTM C33 – Standard Specification for 

Concrete Aggregates), and distilled water. The laboratory 

test complied with ASTM C143 (Slump of Hydraulic 

Cement Concrete test), ASTM C31-19 (Standard Practice 

for Making and Curing Concrete Test Specimens in The 

Field), BS EN 12390-3:2021 (Testing Hardened Concrete 

- Compressive Strength Test), ASTM C1585 (Sorptivity) 

and BS EN 14630: 2006 (Carbonation). 

2.1 Raw Material Preparation  

a.  Cement 

The locally manufactured Ordinary Portland cement 

Type I (NS cement) was selected. The composition of 

Portland cement reported by Zhao et al. (2020) is 

tabulated in Table 1. 

Table 1.  Chemical composition of Ordinary Portland Cement 

Type I (Zhao et al., 2020) 

Chemical name Percentage (%) 

Calcium Oxide (CaO) 64.18 

Silicon Dioxide (SiO₂) 22.02 

Aluminium Oxide (Al₂O₃) 3.50 

Iron Oxide (Fe₂O₃) 0.96 

Magnesium Oxide (MgO) 2.65 

Sulfur Trioxide (SO₃) 3.25 

Sodium Oxide (Na₂O) 0.20 

Titanium Dioxide (TiO₂) 0.24 

b.  Fine Aggregate and Coarse Aggregate 

The fine and coarse aggregate was dried in a 

ventilated oven at 105 ± 5 °C for 1 hour to remove excess 

water and the moisture accumulated in the sand particles 

to obtain the actual quantity of water. The 1000 g and 

5000 g of dried fine and coarse aggregate are sieved using 

a mechanical sieve shaker and left to vibrate for 5 

minutes. The size of coarse and fine aggregates selected is 

in the range of 10 mm to 20 mm and less than 4.75 mm, 

respectively. 

2.2 Mixing Formulation and Specimens Manufacturing 

This study adopted a mixing ratio of 1:2:4 with four 

varying w/c ratios with three replications. As Thillo et al. 

(2021) and Hosseinzadeh et al. (2019) recommended, the 

concrete was mixed by the hand-mixing method to avoid 

air-entrapped during rotation mixing. All solid ingredients 

are dry-mixed for approximately two minutes. Once the 

dry mix was homogenous, distilled water was added as a 
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binder activator to avoid any chemical substance that may 

influence results. The mixed proportion used in this study 

is shown in Table 2. 

Table 2.  The mixed proportion used in this study 

Specimen 
Cement 

(g) 

Coarse 

Aggregate 

(g) 

Fine 

Aggregate 

(g) 

Water 

(ml) 

Pond curing (pc) 

S0.5pc 1000 2000 4000 500 
S0.6pc 1000 2000 4000 600 

S0.7pc 1000 2000 4000 700 

S0.8pc 1000 2000 4000 800 

Burlap curing (bc) 

S0.5bc 1000 2000 4000 500 

S0.6bc 1000 2000 4000 600 
S0.7bc 1000 2000 4000 700 

S0.8bc 1000 2000 4000 800 

 

The slump test determined the workability of the fresh 

concrete by complying with ASTM C143 – Slump of 

hydraulic-cement concrete. A 300 mm conical frustum 

with top and bottom open at both ends, 100 mm and 200 

mm diameters, respectively, was placed on its plate on a 

flat surface. This cone was packed with three phases of 

fresh concrete with 25 times tapping at each layer by a 

long bullet nose metal rod. Then, the cone was steadily 

lifted vertically without interruption, the conical frustum 

was placed inversely next to the sample, and the slump of 

fresh concrete was measured by a ruler. The slump test 

result is shown in Fig. 1 with different water ratios. 

 

 

 

 

 

 

  

 

 

 

 

Fig. 1. Slump test results 

A standard size 150 mm x 150 mm x 150 mm 

concrete was cast using steel mould for each water-

cement ratio for three replications. Afterward, specimens 

are removed from the mould after 24 ± 8 hours (ASTM 

C192) and marked before curing for up to 28 days. The 

specimens were divided into two types of curing: pond 

curing and burlap curing. 

For pond curing, specimens were fully immersed in a 

container with distilled water at ambient temperature (25 

⁰C) following ASTM C31-19, as shown in Fig. 2. The 

metal rods were placed under specimens to allow water 

absorption on the surfaces. While for burlap curing, the 

specimens were covered with damp gunny cloth and 

sprayed with distilled water twice a day until 28 days 

(Zeyad et al., 2022). The specimens with burlap curing 

were placed sheltered to avoid excess evaporation. 

Fig. 2. Pond curing set-up 

2.3 Physical and Chemical Properties 

a. Compressive Strength 

All specimens were tested with compression tests in 

compliance with BS EN 12390-3:2021 using an 

automatic compression testing machine. The platens were 

cleaned before the specimen was placed at the centre of 

the platens. Force was applied at the top and bottom of 

the specimen with a constant rate in the range of 0.2 

N/mm2 to 1.0 N/mm2 and increased continuously until it 

reached the maximum force. The compressive strength 

was evaluated at ages 7, 14, and 28 days. 

b. Sorptivity 

Each specimen's fluid absorption by capillary was 

observed by complying with ASTM C 1585. In this test, 

distilled water was chosen as fluid. Before this test was 

carried out, all 28th days specimens were dried in a 

drying oven at 105 ± 5 °C for 30 minutes. For accuracy, 

all vertical surfaces of the specimen were wrapped with 

masking tape to avoid water immersion on side surfaces. 

As shown in Fig. 3, specimens were held on a pair of 

metal rods and allowed to immerse in a 3 ± 0.5 mm depth 

of distilled water. Water absorption readings are taken 

every 1, 5, 10, 20, and 30 minutes. The sorptivity values 

were determined by Equations 1 and 2. 

 

 

 

 

 

 

 

 

 

Fig. 3. Sorptivity test setting up 

 



11 

 

 

Jumadi et al. / Borneo Engineering & Advanced Multidisciplinary International Journal 

 (1) 

 (2) 

 

Where; 

S   = sorptivity 

I    = the absorption 

t    = Time (s) 

mt = the change in specimen mass in grams, at the time, t 

a   = surface area (mm²) 

d   = water filtration depth (mm) 

c. Carbonation 

After the curing process, all specimens are left in an 

atmospheric environment for the carbonation process. To 

ensure that the carbonation process occurs evenly on each 

surface, specimens are placed on metal rods, as shown in 

Fig. 4 below. After the 28th day, the specimens were split 

into two parts. The new broken concrete area was sprayed 

with colourless phenolphthalein (C₂₀H₁₄O₄) solution by 

complying with BS EN 14630: 2006. The uncarbonated 

concrete area instantly turned to a pink stain, while the 

carbonated area remained colourless. The carbonated 

area’s depth a, b, c, and d (see Fig. 4) was measured using 

a Vernier calliper to get accuracy. The carbonation rate 

was measured as in Equation 3. 

𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ (𝑚𝑚)

𝐷𝑎𝑦𝑠
  

 

(3) 

 

Fig. 4. Carbonation measurement depth 

3.  Result and Discussion 

3.1 Compressive Strength 

The compressive strength test results are illustrated in 

Fig. 5. Based on the graph, the strengths of all specimens 

increased with age but decreased as the w/c ratio 

increased. Cao et al. (2019) & Rao et al. (2021) point out 

that a high w/c ratio will weaken the bonding matrix, and 

increase the void ratio, resulting in weakening the 

concrete. In addition, the lower w/c ratio will also result 

in high compressive strength, low drying shrinkage, and 

decreased workability (Qin et al., 2022). On the other 

hand, the graph showed that the strength of all specimens 

with burlap curing is slightly lower than those with pond 

curing. 

 

 

 

 

 

 

 

 

 

Fig. 5. Compressive strength results 

3.2 Sorptivity 

Based on the graph in Fig. 6, the sorptivity increased 

dramatically as the w/c ratio increased. The water 

filtration by capillaries is higher as the w/c ratio increases 

and exhibit high porosity. Previous researchers have 

reported a w/c ratio (Zhou et al., 2020), raw material 

properties (Razali et al., 2023), aggregate sizes (Zhang et 

al., 2021), and mixing proportion (Yeih et al., 2019) have 

influenced the concrete’s porosity. Liu et al. (2019) 

emphasize that greater accessible porosity will lead to 

great water transportation. They claimed that water 

diffusivity increases uniformly with the increase of 

porosity. Free water (not used in the hydration process) in 

the mixing will evaporate to the surroundings and leave 

voids and capillaries (Malecot et al., 2018; Muslim et al., 

2020). 

 

 

 

 

 

 

 

 

 

Fig. 6. Sorptivity test results 

3.3 Carbonation 

The physical observation of the carbonation depth rate 

is shown in Fig. 7. From the graph, it can be observed that 

the carbonation rate decreased as the age increased. Then, 

the graph also showed that the specimens with pond 

curing have lower carbonation rates than those with 

burlap curing.   
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Fig. 7. Carbonation test results 

Carbonation is a reaction of carbon dioxide with 

calcium hydroxide in concrete to produce calcium 

carbonate and water (see Equation 4). According to 

Wolińsk et al. (2018), the variables that might influence 

carbonation rates are carbon dioxide concentration, 

relative humidity, curing condition, types of cement, 

porosity, admixtures, and w/c ratio. In this case, the 

carbonation rate is believed to increase as the w/c ratio 

consequenced to high porosity. A similar result was 

obtained by Al-Ameeri (2021), who claimed higher w/c 

ratio will accelerate carbonation rates.   

 

 (4) 

4.  Conclusion 

The value of the w/c ratio in concrete mix and curing 

condition has significantly influenced the characteristics 

of the hardened concrete. This study has provided 

valuable insights into the relationship between the amount 

of water and cement in concrete mixtures and their 

resulting properties, such as workability, strength, 

durability, and shrinkage characteristics. 

A lower w/c ratio generally leads to higher 

compressive strength and improved durability due to 

reduced porosity and improved cement hydration. 

However, a lower w/c ratio may also decrease 

workability, making the mixture more challenging to 

handle and place. 

Conversely, a higher w/c ratio improves workability 

by increasing the flowability of the concrete, making it 

easier to mix and place. However, excessive water 

content can result in weaker, more porous concrete with 

reduced long-term durability and increased shrinkage. 

Excessive water evaporates to the surrounding during the 

early hardening stage and leaves air voids that might 

result in a crack. Then, the high amount of void ratios 

significantly increases the interconnected pores and the 

number of capillaries, negatively impacting the 

mechanical properties of concrete. The capillaries will act 

as a transporter of water and carbon dioxide into the 

concrete and will cause weakness in the concrete. 

According to the results, the mechanical strength of 

concrete with different curing methods is slightly 

different. The ponding curing gives a higher compressive 

strength result, lower water filtration, and lower 

carbonation rate. It is believed that the evaporated water 

for the burlap curing method during the early hydration 

stage might not be adequately replaced. On the other 

hand, for burlap curing, it is recommended to spray burlap 

severally in the early stage to keep adequate water for 

hydration. 

The experimental findings emphasize the importance 

of finding an optimal balance between workability and 

desired performance characteristics when selecting the 

appropriate w/c ratio for a specific application. This 

requires considering the desired strength, exposure 

conditions, aggregate properties, and any additives or 

admixtures used. By understanding the significance of the 

w/c ratio and its effects on the concrete, engineers and 

concrete technologists can make informed decisions 

regarding mixture design, leading to the development of 

high-quality, durable, and workable concrete suitable for 

various construction applications. 
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